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SYNTHESIS PROCEDURE FOR LINEAR TIME-VARYING
FEEDBACK SYSTEMS WITH LARGE PARAMETER IGNORANCE

Abstract--This work is addressed to the development of synthesis
procedures for linear time-varying feedback systems. It is
assumed that the plant can be described by linear differential
equations with time-varying coefficients; however, ignorance is
associated with the plant in that only the range of the time-
variations are known instead of exact functional relationships.
As a result of this plant ignorance the use of time-varying |
compensation is ineffective so that only time-invariant com-
pensatioh is employed. In addition, there is a noise source
at the plant output which feeds noise through the feedback
elements to the plant input. Because of this noise source the
gain of the feedback elements must be as small as possible. |
No attempt is made to develop a stability criterion for time-
varying systems in this work.

Two synthesis procedures are developed and investigated.
Both procedures assume system specifications to be given in
the frequency domain (i.e., specifications on the Fourier trans-
form of the system signals) and both procedures arrive at the
transfer function for the linear compensation. The method used -
in the procedures takes an iterative approach in that a design
is made, then the system is simulated on a computer to test its
adequacy. If the design is unsatisfactory, a subsequent design
is made until either the system is satisfactory or instabiliﬁy
is reached. Application of the procedures to general systems
is limited because of the lack of a stability criterion; how-
ever, the procedures can be successfully applied to systems
with time-varying gains since a stability criterion exists

for such systems.
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CHAPTER I
INTRODUCTION

1.1 Description of the System

A block diagram of the system with which this work is con-

cerned is shown in Figure 1.1.

Figure 1.1
Block Diagram of the Feedback
System Under Study

{

The block P represents the plant which can be described by a
linear differential equation with time-varying coefficients and
blocks G and H represent compensations. There is also associated
with the plant a form of ignoraﬁce in that it is assumed the
time-varying coefficients have known bounds on their.variations
but the exact‘functional relationships of the variations are
unknown. All components are considered to be single input-
single output. The compensationsEare to be designed so that the
desired system responée is obtained while the effects of‘the '
plant time variations on the system outpuﬁ are reduced to an

acceptable level. This is to be done with a minimum amount of

noise transmitted to the plant input due to N.



1.2 Histroical Background

Prior to 1950 there appeared to be little interest in time-
varying control systems, and consequently little research had
been done on such systems.1 However, since 1950 more interest
has been shown in time~varying control systems primarily due to
the advent of such modern technology as rockgt flight, space
exploration, and control of high performance aircraft. The
behavior of the plants of these éystems can often be approximately
described by linear differential equations with time-varying
coefficients; thus, techniques have been sought which will aid
the control engineer in designing a suitable system arouna a
linear time-varying plant.2

The major portion of the work to date on linear time-
varying control systems has been done either directly in the
time domain, or some type of transform has been defined with the
subsequent investigation of this transform.

Time Domain Approach:

The time domain approach is the study of the system behavior
as functions of time. It is well-known that the output of a
linear system y(t) is related to the input of the system x(t) by

the superposition integral

y(® =[5 4(t,0) x(1) dr - (1-1)

e <]
where ¢ (t,T) is the output of the system due to a unit impulse

applied at t = 1 and is defined as the system impulse response.3

For the time invariant case ¢(t,7) is a function of t - T.



Friedland4 has formulated‘a representation of the impulse reéponse
¢(t,t) as a lower diagonal matrix where the i, jth.element in the
matrix is the value of ¢(t,T) at time t = t; due to an impulse
applied at time T = ty. This type of representation lends itself
readily to the analysis of sampled data_systems since at the
sampling instanées the integration is replaced.by matrix multi-
plication. Cruz” has worked on -the synthesis of time-varying
control systems using the Friedland representation. The compen-
sations which he obtains are in the form of impulse responses.
These compensations are inevifably time-varying themselves} which
leads to the study of the synthesis of prescribed impulse
responses qf t::'Lme—varyingAsystems.6’7

An.algebra has been presented independently by Darlington,8
A. V. Solodav,? and StubberudlO which allows block diagram
manipulations of a system represented by differential equations.
This would allow the blocks of the system shown in Figure 1.1
to be combined into a single block represented by a linear time-
varying differential'equation‘ana could then be more easily
analyzed. Stubberud also recognized that if the system specifi-
cations were given in the form of a desired differential equation
of the overall system, then the method_could be used as a synthe=
sis procedure. He has thus presented two synthesis tgchniques
for synthesizing a desired system differential equation from the
time-varying differential equation describing the plant. As in
the techniqués employed by Cruz, the compensations which are

obtained by Stubberud are inevitably time—varying.



Transform Approach:

Largely due to the success with which the Laplace and Fourier
transforms can be applied to differential equations with time
invariant coefficients, a number of investigators have sought
transform techniques which can be applied with equal success to
linear differenﬁial equations with time-varying coefficients.

The desired goal in these investigations is to arrive at a
technique which will.yield general solutions to linear time-
varying differential equations merely by solving an algebraic
equation in the transform domain in much the same manner as a
differential equation with constant coefficients can be sélved by
using the Laplace transform. Unfortunately, up to the present
time no transform technique has been found that can be applied to
a linear time-varying system in a practical manner.

Transforms have been found for spegial types of time-varying
differential equations, These special integral transforms include
the Laplace transform, the Mellin transform{ and the Hankel
transform.lls12 The Laplace trénsform is used in the solution of
linear differential equations with constant coefficients, while
the Mellin transform is used to solve the equidimensional
(Euler-Cauchy) differential equation which is of the form

_1 qo-1 )
th dn y(t) + a e 1d . y(t) o« o . Tt aoy(t) = f(t)’
den n-1 gl

and the Hankel transform can'brofitably be applied to Bessel's

equation which is of the form



£2 @Py(8) 4 ¢ dy(t) + (ot2 - n2) = £(t).
at? dt

Unfortunately, neither the equidimensional equation nor Bessel's
equation possesses sufficient generality to be applied to the
time-varying system synthesis problem.

Aseltine13

has proposed a method of deriving a compatible
transform fof a linear time-varying differential equation;
however, practically, the transform can only be obtained for a
sécond order time-varying system. Further, a block diagram
algebra cannot be developed since a transform which is compatible
with one part of a system will not generally be compatible with
anothervpart of the systemn.

Nayloril”15 has taken an interesting approach in attempting
to obtain a system transformation. Working with the Friedland
characterization, he has defined the system transformation as a
matrix which, when ﬁroperly applied to the Eriedland characteriza-
tion of é system, results in a system matrix which is diagonal
and is thus easily manipulated. However, the transform domain of
the Naylor Transformation does not have a simple interpretation,
so that synthesis in this transform domain appears to.be as
difficult as working directly in the time domain.

L. A Zadeh 16,17,18,19 pag defined a system tranéformation :
that is similar to the_transfer fpnction of a time-invariant
system., The transformation proposed by Zadeh which is referred to

as the system function is defined as



a(t,g0) = [ ¢(e,me U ED g

where ¢(t,t) is the impulse response of the system. cruz20 has
made a study of the system function and has proposed a technique
for synthesizing a desired system function provided, of course,
that such a desired system function is known. This work does not
consider the feedback problem. Kaplin21 has considered the system
function from a more analytical §iewpoint and has presented
theorems which give some of its mathematical properties. Other
researchers?2:23,24,25, have also considered the Zadeh trans-
formation, but no éignificant progfess has been made past the
purely mathematic description and the study of its general

characteristics.

1.3 General Considerations

In this section .three of the more important aspects which will
affect the design of the system described in Section 1.1 will be
considered.

Plant Ignorance:

Although the plant can be described by a linear differential
equation with time-varying coefficients, it is assumed that these
variations are not known explicitly as functions of time. That
is, the plant has associated with it some type of ignorance. Such
an assumption is necessary in the formulation of the feedback
problem; otherwise, it would be possible in theory, at least, to

design a prefilter which would effectively cancel the parameter



variations of the plant and feedback would not be‘mandatory26.

It will, therefore, be assumed that ranges for the values and the
rates of variations of the time-varying coefficients are known
but that the time of occurrance of the variation is unknown and
the exact rate and values of the variations are unknown. Fiéure
1.2 gives an illﬁstratioh of what is assumed to be known and
unknown about the coefficients. Referring to Figure 1.2, the
range of a,(t) is aséumed to be A < an(t) < B, and the range of K
is assumed to be K; < K < Ky; however, the actual Valueé of A',

B', and K as well as T are assumed to be unknown.

ap(t)
B
1B
K
A"
1
|
A .
________ - — ———————— == =
5 -
0 T t
Figure 1.2

Tllustration of the Ignorance Assumed to :
Be Associated with Each Coefficient
Due to the assumption that the plant is not completely known,
it is evident that the‘synthesis procedures of StubberudlO and

Cruz,7 which arrive at time-varying compensations as mentioned in



Section 1.1, cannot be used since these procedures rely on knowing
the equation coefficients explicitly as functions of time. Never-
theless, one may still consider whether or not time-varying
compensation might be superior to time-invariant compensation.
Under the ignorance assumptions just outlined, time-varying
compensation has no particular advantage over time-invariant
compensation., The argument leading to this conclusion is as
follows. The compensation cannot be used to cancel out

the plant parameter variations sinqe they are not known exactly;
therefore, if time-varying compensation has an. advantage over
time-invariant compensation, it must be due to the time-varying
compensator's superior signal processing properties or filtering
properties. However, to take ad?antage of the time~varying
compenéator's signal processing properties, the time-varying
characteristics of the signal to be processed must be known.

But, these are not known in general due to the assumption of
plant ignorance which thus leads to the conclusion that there is
no particular advantage in using time-varying compensation. A
second consideration from a more practical point of view is the
fact that a time-varying compensator is much more difficult and
expensive to fabricate and would in all probability be physically
larger than a time-invariant compensator. Thus, even when the‘
plant is known exactly, it may be more advantageous té use time-

invariant compensation. For theseé reasons only time-invariant



compensations will be considered in the synthesis of the system
of Figure 1.1

Specifications:

Several performance criteria have been established for linear
time-invariant systems which include step response criteria,
steady state error critéria, stability criteria and frequency
response criteria.2’ Because of the linearity of the system, a
modified form of theAmajority of these criteria can still be used
in the linear time-varying system. . Unfortunately, the stability
criteria of a linear'time—invariant system cannot be applied to
a linear time-varying system.

The design criteria which will be used in this work is the .
step response of the system. Toijustify the use of the step
response to judge system performance of linear time-varying
systems, one can argue that any input signal can be approximated
by a sum of step functions; and, due to the linearity of the
system, the system output will be the sum of the step responses
due to each individual sﬁep function in the input. Thus, a
reasonably well-behaved step response will imply a reasonably
well-behaved response to any input. A second justificatioﬂ
can be made by examining the reason for using the step response
as a performance criteria in a linear time-invariant system. In
a linear time-invariant system the‘impulse response ¢{(t - 1) and

the step response c(t) are related by
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st - ) =L e(®
dg E=¢t -1

and knowing ¢(t - T) the system response to any input can be
determined. Thus, the performance of a linear time-invariant
system can be determined from its step response. If one could
obtain the impulse response of a time-varying system from its
step responses, then it would be possible to associate system
behavior with these step responses in the same way as is done in
the time-invariant system. Note that in time-varying systems
one would actually considér a number of different step responses,
each step response corresponding to a particular time of interest.

Tt will now be shown that the impulse response for a linear
time-varying system can be constructed from a set of step
responses of the system. Suppose the values of all system step
responses starting in the interval from t = 0 to t = t;] are

known at t = tq. Figuie 1.3 shows one such step response CY(t)

which is due to a step input applied at t = Y. The value of a

step response evaluated at t t] due to a step input applied at
t = y is given by

t1
eyt = etep,0a. (1-2)



A cy(t)

ty

Figure 1.3

- .Step Response Due to a .
Step Input Applied at t = vy

By considering t; fixed and varying v, cY(tl) becomes a function

of y. Let

>\(Y) == C.Y(t]_)

so that Equation (1-2) can be written i

y
A(y) = ftl ¢ (ty,T)dr.

Differentiating A(y) with respect to y one obtains the desired

result

dly) _ .
"d‘% = d)(tl’Y)-

Thus, with a time-varying system it is possible to associate

system behavior with its step responses.

11
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The design specifications will be assumed to be given in the
form of an acceptable step response. In principle step response
specifications can be given either in the time domain or the
frequency domain. Generally, step response specifications are
given in the time domain since one is normally aware of the
desired time domain response. The difficulty with frequency
domain specifications lies in the fact that it is not known
precisely what consfitutes acceptable specifications. The basic
problem of translating time domain specifications into frequency
domain specifications and vice versa has yet to be solved28,
although investigations of single responses have been made by
researchers in the fie1d,29,30 Nevertheless, frequenéy domain
specifications are desirable since by using such specifications
general design procedures can be developed which are not dependent
upon the order of the differential equation describing the system,
and thus such procedures are not limited to simple systems.
Further, the "cost of feedback'" is clearly evident in the fre-
quency domain,28

This study will not attempttto solve the problem of translat-
ing time domain specifications into frequency domain specifica—
tions; rather, the necessary frequency domain specifications will
be assumed known. These épecifications will be of the form of
a limit on the magnitude of the Foﬁrier transform of the

difference in the actual system step response c(t) and a desired

system step response c_(t). Some justification for such
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specifications can be seen from the Fourier transform of this

difference

fwe(t)e'jwtdt

00

E(jw)

where

e(t) c(t) - co(t).

If E(jw) is "small" over the entire frequency range then e(t)
will aiso be "small". The exact felation between the magnitude
of the argument of E(jw) and the magnitude of e(t) has yet to be
determined.

Stability Considerations:

Although a number of researchers have investigated the
stability of linear time-varying systems, necessary and sufficient
conditions have yet to be found which will insure the stabiiity
of the system of Figﬁre 1.1:.31 A number of definitions and con-
cepts of stability exists; however, in this work a system will be
considered stable when it is bounded-input bounded-output stable.
That is, if the system input is bounded, then’ the system output
will also be bounded for a stable system.

Research in the stability of a time-varying system has taken
basically two approaches. The first is to examine the system's
differential equation or impulse response in the time domain;?’z’33

however, no practical results have been obtained which lend

themselves directly to the application to the system of Figure 1l.l.



The second approach has been to obtain a frequency domain sta-
bility criterion similar to the Nyquist stability criterion of
time-invariant systems.,y*!'35 Results have been limited to systems
in which the only time-varying element is the plant gain. Such a

system is illustrated in Figure 1.4.

—p— G w—— k(t)

Y
lao]
v
Y
a

Figure 1.4
System with Time-varying Gain

However, even for this case only sufficient conditions for
stability have been determined rather than the necessary and
sufficient conditions which would be required for a completely
satisfaétory stability criterion.

This thesis will not attempt to develop a stability criterion
for linear time-varying systems; rather, synthesis procedures will
be developed under the assumptioﬁ of a stable system. It will be
seen that the procedures can easily be modified to include any
applicable stability criterion that'specifies constrai;ts on the
transfer function of the feedback compensation H. The‘sufficient

conditions for stability which have been developed for the system

14



of Figure l.4 represent such a criterion and the synthesis pro-
cedures will be modified appropriately to include this criterion

~in the design of systems of the type shown in Figure 1.4,

15



CHAPTER II

DEVELOPMENT OF INPUT-OUTPUT RELATION AND SYSTEMS EQUATIONS

2.1 General

A number of representations exist which relate the output of
a linear system’to its input. The differential equation itself
can be considered as one such representation. Unfortunately, the
differential equatién is not directly useful as a design tool
because it does not allow for the system characteristics to be
readily observed in order that a suitable design can be developed.
It is thus desired that an input—outﬁut relation be found which
is suitable for the development of a design procedure.

An investigation of input-output relations was made in an
effort to find one which is well suited for design purposes. The
investigation centered on four functions in particular. The four
functions which were considered are:

(1) The impulse response ¢(t,T) which is defined as the

output of the system at time t due to a unit impulse
applied at time .21

(2) The system function which was introduced by Zadehl6

and is defined as

¢ (t,jw) = ft¢(t,r)e_jlw(t_r)dr

(3) The complementary function which is defined by

¢ (jw,t) = f ¢(t,r)e—jw(t—r)dt
T
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(4) The frequency impulse“response which is defined by

o t . '
¢(Gu,dv) = f [ 6,080 TIO gr g
-0 =0 27 :
is the Fourier transform of the output at frequency juw
due to the iﬁput of an unit impulse of freQuency at jy.
A good'deal pf time wasAdevoted to the study of these four
functions and a number of interesting properties were found and
investigated, HoweQer, none of the functions were found to lend
themselves to the development of a.practical design procedure.
The difficulties encountered ranged from not being able to
evaluate the functions to not being able to determine the output
in terms of the iﬁput for systems having a feedback loop. An in-
depth discﬁssion of this study will not be presented because the
results which were pbtained generally have little bearing on the
design problem.

‘The frequency impulse response was found to be useful because
of its notational conveqience whenAstddying the Fourier transform
of the various signals of the system. Because it is used later in
the work, the generalvcharactefistics.of-the freQUency impulse
response will be presented and a discussion of the difficulties -
in employing the frequency impulse response will be given. The:
difficulties encountered with the ffequency impulse response are
rebresentative of“thé type of difficulties‘encountered with the
other three. | |

A clarifiéation of notation shbuld be made before going-

further. The term "frequency domain'" refers to expressions as
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functions of frequency such as the Fourier transform representa=-
_tioh of signals, the transfer function of a system or the frequency
impulse response of a system. The term "time domain" refers to
expressions as functions of time such as the impulse response or

a signal expressed as a function of time.

2.2 Properties of the Frequency Impulse Response

| It would be possible to relate the frequency domain represen-
tation of the system output to that of the system input by first
employing a time domain relation suéh as the impulse response and
then taking the necessary Fourier transforms. However, it is more
convenient to employ the frequency impulse response sincé it is a
direct relation between the frequency domain representation of
the system output to that of the input. The frequency impulse

response is defined as

© b jért —iwt
o(juw,iy) = f [ ¢(t,t) & e7IWt gr 4 (2-1)
—00 =00 ZTT

where ¢(t,T) is the system impulse response. This function was
first mentioned by Zadeh who referred to it as the bi-frequency
transform;19 however, Zadeh gave no results of any study he may
have made of this function. Kailath3’ uses similar forms in his
study of time—varying filters. The author feels justified in
referring to this function as the ffequency impulse response since
it possesses many characteristics in the frequency domain that the

impulse response exhibits in the time domain.,
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Figure 2.1 is an illustration of a linear time-varying
system having an impulse response denoted by ¢(t,7) and a fre-
quency impulse response denoted by &(jw,jy). The differential
equation describing the system is assumed to be of the form

a_(t) 513.5 2(E) + . . .+ ag(t) x(t) =
dt

b, (t) d_m_n_ly(t) + .. .+ by (B)y (L) (2-2)
dt

where aj(t) # 0 and n 2 m.

Y (Gw) o (jw,iy) X (jw)
Figure 2.1

Block Diagram of a Linear System

The primary reason for referring to ®(jw,jy) as the frequency
impulse response is because it is the Fourier transform of the
system output evaluated at freduency jw due to an impulse of
frequency at jy. This, of course, is the frequency domain
equivalent of the impulse response. The property can be easily
demonstrated as follows. Let the system input be given by

y(t) = elyt wﬁich is an unit impulse at frequency jy in the
27

frequency domain%? The system output is given by38



t .
x(t) = | ¢(t,1) &5 dr.
— 2w

Taking the Fourier transform of x(t), one obtains

dr e~Jwt 4t

[+ t R
XGw) = [ [ e,y &
2T

¢ w00 =00

which is the definition of the frequency impulse response given in

Equation (2-1).

If the system is time-invariant, the frequency impulse

response is given by

d(Gw,iy) = 2(jw) §(3y - jw) (2-3)

where ¢(jw) is the transfer function of the system. This result

is obtained as follows. Since the system is time~invariant, the
system impulse response is given by ®(t,r) = ¢(t~t). Letting
T = t-u the frequency impulse response can be written as
(=] [e] .
o (ju,iv) =1 f [ f'¢(u)e’JYudu} e~(Ju=3V)t g,
271' —C0 00

The integral inside the brackets is the system transfer function
so that one can write

0Gu.In = = [ ey & UIVE

T =
or upon performing the integration49 one obtains

o(jw,3yv) = e(jy) §(jw - Jv).



Another important property of the frequency impulse response
is that the Fourier transform of the system output X(jw) is given

by the relation

o

X(3w) = [ #(3w,3v) Y(3y) dy. (2-4)
This expression is obtained by taking the Fourier transform of

the output as

oo

X(Gw) = f x(t) e~JWt de, (2-5)

Expressing x(t) by

t
x(t) = [ ¢(t,7) y(1) dr

and expressing y(t) as the inverse Fourier transform of Y(jw),

Equation (2-5) can be written

—00 =00

o t ©
XGw) =/ [ ¢(,0) [-21—— [ YGn e—jYTdy] dr e~IWE g,
T o

Interchanging the order of integration, the relation becomes

=) <] t . .
X(jw) = f B_— [ [ et,1) eIVT emIut 4g dt] Y(§y) dy.
m —00

-0 -—00

Recognizing the term inside the brackets as the definition of the.
frequency impulse response establishes Equation (2-4) . The
frequency impulse response can be thought of as an operator which

operates through the relation expressed in Equation (2-4). Thus,

21



Equation (2-4) can be referred to as ¢(jw,jy) operating on Y(jy)
with the result of the operation being X(jw).

Special consideration should be given to Equation (2-4)
because this relation demonstrates a basic difference in fime—
varying systems and time-invariant systems. Suppose the system .
were time-invariant with.transfer function ®(jw). Equation (2-4).

becomes the well-known relation
" X(Gw) = o(Gw) Y(jw).

Observe that in the time-invariant system the value of the output
at frequency w is due only to the value of the input at m.which
is weighted by the value of the transfer function at frequency w.
Thus, to defermine the value of the output at a given frequency,
one only needs to determine the value of the input and the
transfer function at that frequency. For the time~-varying
system on the other hand, Equation (2-4) shows that the system
output at w is not only influenced by the system input at w. but
also by all other frequencies in the system input. The amount of
influence each frequency has on the system output is determined
by the weighting of the frequency impulse response at each
frequency., Therefore, to evaluate the output of a time-varying
system, one must determine the values of the system input at all
frequencies and the corresponding vélues of the frequeﬁcy impulse
response instead of just the two values required in the time-

invariant system. The basic difficulty in time-varying systems is

22



that a much

in the time~

If two
Figure 2.2,
combination

two systems.

impulse response of two parallel systems is the sum

larger number of frequencies must be considered than
invariant case.

systems are considered in parallel as shown in

the frequency impulse response for the parallel

is the sum of the frequency impulse responses of the

This is easily obtained from the fact that the

responses of the two parallel systems.

¢

X
y)

X

—mr |
. by =0+ [ >

Figure 2.2
Combining Systems in Parallel

Thus, the equivalent impulse respdnse of the parallel system

shown in Figure 2.2 is given by

¢ (t,T) = ¢1(t,r) + ¢2(t,r)v

of the impulée

23
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Applying the definition of the frequency impulse response,
Equation (2-1), to this relation yields the same property for the
frequency impulse response.
Cascade systems, unfortunately, do not combine as éasily as
do parallel systems. The equivalent impulse response of two

systems in cascade as shown in Figure 2.3 is given by

0 (ju,37) = [ ¢,(jw,58) e (3€,3v) dE (2-6)
Y Z X
> 9 oo o, e
Y o X

> % (u,iy) = f %) (jw,38) 21(38,3y) d§ [—>—s

Figure 2.3
Combining Systems in Cascade
This relation can be obtained by letting Y(jA) = 8(jA-jy). Since
the input is a unit impulse in the frequency domain, the Fourier
transform of the system output is the frequency impulse response

of the system. From Equation (2-4) the Fourier transform of the



system output is obtained from the intermediate signal Z(jw) by

the relation

0

X(jw) = 0g(j0,37) = [ 0,(jw,38) Z(3E) dé (2-7)

and Z(j&) is given by
Z(38) = f 9, (GE,30) Y(3N) da.

Substituting Y(jA) = 8(jA-jy) and performing the integration, one

obtains
2(38) = ¢, (35,37).

Substituting the above relation into Equation (2-7) gives the
desired expression, Equation (2-6). Again, thinking of the
frequency impulse response as an operator, the cascading of two
operators results in a new operator ¢, which is obtained by
letting the second oper;tor %5 operate on the first operator @1.
Note that ¢, operating on @1 is not fhe same in generél as @1
operating on @2.

Cascading a time—invafiant system with a time-varying system
is quite simple. First assume that @2 in Figure 2.3 is time-

invariant. From Equation (2-3) the frequency impulse response of

@2 is

oy (Ju,37) = @ (Gw) §(y-ju).

25
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Substituting this expression for ¢, into Equation (2-6), the

equivalent frequency impulse response is found to be

o (Gu,3v) = ¢,(5w) @, (ju,37)-

Likewise, 1if ¢l‘is time-invariant, @e is given by
o (30,3Y) = 8y (Gu,iv) & (3v).

Thus the time-invariant portions of a time-varying system are
easily handled by ordinary multipliéation rather than the more
difficult integration process.

The concept of the inverse system9 is also important in
using the frequency impulse response. Figure 2.4 shows an
illustration of a system represented by ¢ and its inverse

represented by ¢_1,

¢_1 ——3p—o0

Y

System Inverse
System

Figure 2.4
Tllustration of System and Inverse
The cascading of a system with its inverse results in a system
in which the output is equal to the input. Such a system will be

referred to as the unit system. The frequency impulse response
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of the unit system is found from the definition to be
s (3ws3y) = §(jw-~ 3¥).

Thus, if either the inverse operates on the system or if the
system operates on the inverse, the resulting frequency impulse

response is §(jw - 37,

2.3 Discussion of the Frequency Impulse Response

In the early stages of the investigation it was hoped that
the frequency impulse response could-be represented explicitly as
a function of frequency and could thus then be utilized in much
the same manner as is the transfer function for time—invariant
systems. This hope was not realized for all efforts to obtain an
explicit'functional representation were, in general, unsuccessful.
However, in some'instancés_it is possible to represeﬁt the
frequency impulse response by an explicit function of frequency.

Any attempt to obtaﬁn the frequency impulse response from a
direct application on the defintion is impossible except for
systeﬁs which can be described by first order differential
equations or by simple time-varying gai;s. This is due to the
fact that the impulse response of higher order time~varying
systems cannot be found in general. Also, for systems which can
be described by first order differential equations a closed
functional form cannot be obtained even with the time—§arying

function specially chosen to aid the calculation.
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The simplest time-varying system consists of a time-varying
gain £(t). The frequency impulse response for this system is
obtained from a direct application of the definition, Equation
(2-1), and is found to be

(I)(jw’j-y) = E_(.J..L—_a]l)
27
where F(jA) is the Fourier transform of £(t).

The next type of system to consider is one which can be

described by a first order differential equation of the form
x(t) + £(£)x(t) = y(t) (2-8)

where y(t) is the system input and x(t) is the output. The

impulse response for this system is given by

t
¢ (t,7) = exp[— [ £(r) dt | .
T

The frequency impulse response is found by applying Equation (2-1);

however, it is evident that unless f(t) is selected very carefully

the integrals cannot be evaluated and an explicit functional

representation of the frequency impulse response is not possible.
As an example, consider alsystem which is described by the

first order differential equation given in Equation (2-8) where -

2e2t + et

e2t + et

f(t) =

The graph of f(t) is shown in Figure 2.5.
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f(t)

Y

Figure 2.5
Graph of f(t) Used in Example

It is easily verified that the system impulse response is given by

. 2T T
o(t,T) = §§E¥i—§£ u(t - 7).
e + e

A straightforward application of Equation (2-1) yields for the

frequency impulse response

(S 'w~— 1 ot t el 4t
2(ju,jv) = —(L—;})‘ +— : T F— e Gu-3nt ge
Y Gy+1) (Juk2) ©  -= e“ttet

Note that eveﬁ though the function f(t) was especially chosen, a
closed functional form of the frequency impulse response is still
not possible.

If the function is described by a differential equatioﬁ of
order higher than one as given in Equation (2-2), the impulse
response cannot be determined in general and thus an expression

for the frequency impulse response cannot be found.
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It is possible, however, to determine the inverse frequency

impulse response of a differential equation of the form
dan
a“(t)EZh x® + ...+ ao(t)x(t) = y(t) (2-9)
where y(t) is the system input and x(t) is the systém output.
The inverse system is also described by Equation (2-9); however,
in the inverse system x(t) is the input and y(t) is the output.
‘The frequency impulsé response of the inverse system can be
found by employing the property that it is the Fourier transform
of the system output evaluated at jw due to.an impulse of fre-
quency at jy applied to the input. An impulse of frequency is
applied to the input by setting
eJyt

x(t) = =,
27

The output is easily found to be

eJvt
27

y(t) = [an(t)(jy)n + .. 0+ ao(t)] . (2-10)

Taking the Fourier transform of y(t) results in
-1, . . -jut
o " (ju,iy) =% [y(t)] = [ y(£) 7% 4t

=1
2m

[An(jw‘jY) GO+ ..+ Ao(jw-jY)] (2-11)

where Ai(jk) is the Fourier transform of ai(t). Presumably the
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frequency impulse response can now be obtained by finding the
function ®(jw,jy) which satisfies the equation

o

sGu - §v) = [ 0w, 30 o~1(4r,3y) dr.

-
Unfortunately, it was not possible to find the proper function
?(jw,3ir) which éatisfies‘the above relation for a general
6=1(40,37) |

* Note that the right hand side of Equation (2-9) can contain

a first order derivative of y(t) and the frequency impﬁlse
response of the inverse system can still be found since the first
order differential equation can be solved. Thus, an expression
for the inverse frequency impulse response of a system of the
general.forﬁ shown in Figure 2.6 can be obtained although the
expression will generally contain integrals which cannot be

evaluated in a closed functional form.

t d
T E%+ by =2z S0 a (t) &% 4.+ a ()x = z x(t)
den

Block 1 ' ’ Block 2

Figure 2.6
Type of Plant for Which an Expression of the Inverse
Frequency Impulse Response Can Be Obtained
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It should be emphasized that if the differential eqﬁation in
block 1 of Figure 2.6 is of order higher than one, an expression
for the inverse frequency impulse response cannot be obtained.

To summarize, it is seen that an expression for the frequency
impulse response cannot be obtained for all types of systems.
However, an expfession can be obtained for time-varying gains and
for systems that can be described by first order differential
equations., Also, an.expression for the inverse frequency impulse
response can be obtained for a system of the type shown in |

Figure 2.6.

2.4 Development of System Equations

The system equations will now be developed utilizing the
frequency impulse response. The desired objective is to develop
an expression which will allow one to determine the Fourier
transform of the system output from the Fourier transform of the
system input, Equationé will be found which give the desired
relation, but, unfortunately, camnot be solved to yield the values
of the system output. |

For convénience the system is shown in Figure 2.7. A
detailed discussion of the noise transmission from the noise
source N is given in Section 4.7 and will not be considered at
this point. It is assumed that the time-invariant prefilter has
a transfer function G(jw), and the time-invariant feedback element
has a transfer function H(jw), while the time-varying plant has a

frequency impulse response P(juw,jy).
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|
)
)

Prefilter Plant L e N

A

-H

Feedback

Figure 2.7
System under Study

One form of the basic equation is developed as follows. The

system output is given in terms of the plant input by the

expression

oo

c@Gw) = f P(3w,iv) Z(iY) dy. : (2-12)

and the plant input is given by thé expression
Z(iv) = 6(iv) R(3y) - H(Gv) Clv).

Substituting Z(jy) into Equation (2-12) one obtains

Cw) = f PGu,iNGCUERGY 4y = [ P(Jw,iVHGY)C(I)dy.  (2-13)
This is a potentially useful relation since it relates the system
output to the system input. However, the equation is known as a

singular integral equation and, unfortunately, no general methods:®

of solution are known for such equations.42 Obtaining a solution
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is doubly difficult in this case because of the complex expres«
sion for the frequency impulse response.

Equation (2-13) can be put in an alternate form by operating
on both sides with the frequency impulse response of the inverse

plant P‘l(jw,jy). The resulting equation is

=]

[ P lGu,dv) cGv) dr = GGw) RGJw) - H@w) C(w)  (2-14)
- .
Again, this equation is a singular integral equation and cannot in
general be solved. However, becausé of the less complex expres-
sion for the inverse frequency impulse response of the class.of
plants which can be described by Equation (2-9), one can come
closer to obtaining a solution from Equation (2-14) than from
Equation (2-13). As an example, assume the plant is a time-
varying gain f(t), the inverse of which caﬁ be described by a

function of the form
£le) = kK + Ae~Pt u(r).

Applying the results obtained in the last section, the inverse

frequency impulse response is found to be

P~l(w,iy) = K s(Ju-jy) + L_ A
JW,JY Ju=3Y 2 b F 3o = )

Substituting this expression into the integral term of Equation

(2-14), one obtains
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(o]

f plGu,gv) cGy) dy = [ A $(Ju-3v) CGHY) dy

= OO 00

1 Iw A

LA gy 4
2w -0 (b—jw-jY)

The first integrél on thé right hand side is equal to C(jw).

With a proper interpretation the second integral can be evaluated
by contour integratién. Instead of integratiﬁg the real variable
from minus infinity to plus infinity, the integral is first
multiplied and divided by j, then the complex variaﬁle s is
substituted for the variable jy with the path of integration aloﬂg‘
the imaginary axis. Sincé C(s) is the Laplace transform of the
s&stem output, IC(s)I goes to zero as rsl goes to infinity, and
the integral can}thus be tho;ght of as being integrated around a
closed path where the path encloses the right half plane.
Therefore, the integral.can be written in the form

1 A

— C(s) ds
21y ° (s-b-jw)

where the path of integration encloses the right half plane. This
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is in the form of Cauchy's integral formula-“ and is evaluated as

-AC(juwtb).

Equation (2-14) thus can be written as
[A + H(jw)] C(jw) - A C(jwt+b) = G(jw) R(jw) ‘ (2-15)

The problem now is to determine a function C(jw) which satisfies

Equation (2-15). Unfortunately, a method of determining the
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solution of Equation (2~15) has not been found. The most
promising approach has been to represent C(jw) as an infinite
series; however, no real success has been achieved by this
method. Although the above approach has not yielded an analytical
solution for the time-varying system, it does come the closest of
any method attempfed.

An attempt to obtain an analytical expression for the system
output from either Eqﬁation (2-13) or (2-14) has been unsuccessful.
Thus, a different approach must be taken to develop a representa-

tion which may be used for design purposes.



CHAPTER III
DEVELOPMENT OF SYNTHESIS PROCEDURES

3.1 Introduction

In the last chapter an attempt to obtain a solution to the
time-varying sysfem equafions in the form of an explicit function
of frequency proved to be unsuccessful. Design procedures based
on the knowledge of sﬁch functiqns, therefore,'cannot be developed.
The approach in this chapter is té develop equations and design
methods which lend fhemselves to numericél solutions of the
system equations. This approach should be more successful since
numerical solutions can be obtained from analog and digital
computer simulations. The difficulty is the development of
design proéedures'which can utilize such solutions.

A degree of success has been achieved in that two design
procedures based on numerical solutions have been developed.
Unfortunately, as was pointed out in Chapter I, a general
stability criterion is not évailable_for linear time-varying
systems., Thus, it is not known whether tﬂe designs obtained by
these procedures are stable. When the plant has only a time-
varying gain, however, sufficient conditions for stability do
exist so that in such cases it is usgally possible to arrive at a
stable design.

The two synthesis procedures will be presented in the

following secﬁions together with illustrating examples.
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3.2 Synthesis Procedure One

This'design procedure is based on a comparison of the actﬁal
system step response to a desired system step response. The
approach is to design the system such that the magnitude of the
difference in the Fourier transforms of the actual system step
response and the desired step respoﬁse falls within some
specified level. For this method the specifications are assumed

to be in the form
[E] = loco| < u (3-1)

where C, is the Fourier transform of the desired step response
and C is the Fourier transform of the actual step response. (See
Section 1.3.)

The primary reason for selecting such an approach is that the
system equation describing |E| lends itself to the development of
a practical design method. The procedure requires that a series
of designs be made in which each new design comes closer to
satisfying the specifications than the previous design. This
iterative procedure is continged until eithef a satisfactory
design is obtained or until the system becomes unstable.

The system design equations will now be developed. The

system is shown in Figure 3.1.
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In order to simplify the notation, let
X =PY ‘ (3-2)

be the symbolical representation between the input Y of a block
and its corresponding output X. The inverse representation is

denoted by
Y = p-lx, ' (3-3)

Using this notation the system equation, Equation (2-14), can be
written

p~lc = GR-HC . | (3-4)

~Let the inverse time-varying plant be written in the form of the
sum of a time-varying component AP~! and a time-invariant

component Po'l. That is,

+ap-l, (3-5)
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Also, the system output C can be written as
C=C,+E (3-6)

where C, is the desired output and E is the error. Substituting
these expressions for P~l and C into Equation (3-4) onme can

obtain
-1 -1 ~-1c =
P7°E + P TC, + APT'C, + HC, + HE = GR. (3-7)

The prefilter G is now defined such that if the plant becomes Pys
the system step response is the desired response Co. Thus, the

following equation is also satisfied
_1 = —_
P, CO + HCo GR. (3-8)

Employing the relationship expressed in Equation (3-8), Equation

(3-7) becomes
P,"lE + HE = -4p=1(C +E) . (3-9)

Equation (3-9) is the design equation which is employed in
this design procedure. The equation is expressed in full

notational form as
p,"1(ju) E(ju) + H(jw) E(jw) =

[ 0rlGu,dn [ Gt + EGY) | dv (3-10)

=00

where Po-l(jw) is the transfer function of the time-invariant

portion of the inverse plant. As was discussed in Section (2.4)
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this eqﬁation is a singular integrél equation and no general
method of solution is known. Thus, it is not possible to solve
for E as an explicit function of frequency. Nonetheless, the
equation can be used to arrive at a design procedure.

Equation (3-10) is written in the form

E(jw) =

-1 / 2271 (30, 3v) [Co(jY) + E(jY)] dy . (3-11)
P,ol(5w) + H(jw) ==

Applying the specifications given in Inequality (3-1), one obtains

|E(3w) |=
(3-12)

_1.
Po~l(Jw) + H(jw)

/ AP'l(jw,jY) [Co(jy) + E(jy)] dy | <M.

—c0

From the above relation it appears that if system stability can
be maintained, it may be possible to reduce the magnitude of the °

error to any desired level by increasing the magnitude of H.

N,

" Note that H is the only term over which the designer héé direct
control: It is showh in Appendix A that except in one case the
magnitude of the error can indeed be reduced to as small a value

as desired by increasing the magnitude of H provided system
stability can be maintained. The one exception is at w = o and
with the plant not having an integrator. That.is, if the plant were
time-invariant, the system would be classified as type 0.41

It is possible to design a system which will meet the specifi-

cations simply by increasing the magnitude of H to some.
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arbitrarily large value. This is not a satisfactory approach,
however, because as the magnitude of H is increased, the trans-
mission of ;he noise from the noise source N to the plant input
is increased proportionately. Thus, it is desired to increase
the magnitude of H no more than absolutely necessary in order to
satisfy the specifications. The design method presented in this
section will not directly yield,thé optimal design, but the
method does provide é systematic approach to increasing the
magnitude of H, In order to approach the optimal design, the
designer must utilize the insight gained from the application of
the design procedure. As has been mentioned, the procedure
involves an iteration technique where a desién is made and then
tested. If the specifications are not satisfied, a subsequent
designlis made based on the previous design. The subsequent
design will come closer to satisfying the specification than the
previous design.

Iﬁ order to begin the iteration procedure an initial design
must first be made. Any stable design could be used as the
starting design; however, such'an approach could yield excessive
iterations and would not lend iﬁself to the systematic study of
the system. One possible approach would be to assume that the
plant were time-invariant but that the parameters could take on
any constant value within their rangés of variation. ‘The design
could be made under this assumption using the methods presented

by Horowitz.28



Another approach is to begin with Equa£ion (3-13) and assume
that the integral term involving the error is zero. If the time-
variations were known as functions of time, the remainder of the
equation could usually be solved analytically and a design made.
based on this analytical solution.

The second approach of obtaining a starting design will be
presented with the design procedure; however, this is not to
imply that the secoﬁd approach is sﬁperior to the first. The
second approach is given because it is not included in the
literature elsewhere as is the first approach. The second
approach 1s also used in the examples given in this section
because the time-variations are assumed to be functions of time.

The design method will now be presented. For convenience,

the design equation is rewritten in Equation (3-13) as

E(jw) = M(jw) [Io(jw) + AP~ (5w, 3v)EGY) dY] (3-13)
where
A(jw) = -1 | (3-14)
Py l(jw) + H(jw) |
and

T GGw) = [ AP Gu, i UMdy L (3-15)
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First Iteration:

The function to be determined is A(jw). For the first
iteration let A(jw) be denoted by Ao(jw).
Step 1

Assume that

[o]

[ 2P 15w, 3MEGY)dY = 0 (3-16)

so that Eéuation (3-13) becomes
E(jw) = A, (Gw) I (jw). (3-17)
Applying the specifications one obtains
[EGW | = [A,Go)| TG | < M(w) (3-18)

which by using Equation (3-14) can be rewritten as

lIo(jN)I

< |27 HGw) + BGW . (3-19)
M{w)

Step 2

Since the term IIo(jw)I depends upon the plant parameter
variations, it will take on a rénge of values in the complex
plane. This range is determined for several frequencies of
interest. Regions are then degermined in the coﬁplex plane
which correspond to the values of Io(jw)/M(w). From these
regions a region of acceptable values of H(jw) is determined

in the complex plane for each frequency of interest.



Step 3

Determine an H(jw) as a function of jw such that it lies
within the acceptable regions found in Step 2 and such that
IH(jw)l is as small as possible. This step is actually an
exercise in curve fitting and the H(jw) which is selected
will depend upon thé desired simplicity of the compensation

network as well as the experience of the designer. Let the

H(jw) selected in this step be denoted Ho(jw).

Step 4

The prefilter G(jw) is determined from Equation (3-4).
Solving Equation (3-4) for G(jw) one obtains
6(j) = [Po'l(jw) + Ho(jw)] Co(3w) (3-20)
R(jw)

which completes the first design.

Since H,(jw) was designed under the assumption expressed in
Equation (3-16), it will in all probability not be a satisfactory.
design. In order to determine whether or not this first design
satisfies the specifications the design'iéhsimulated on an analog
or digital computer and the frequency domain representation of the
error is obtained. Let the error of the first design be denoted-
E,(jw). Note that the simulation is merely the means of obtaining

‘'

the solution to the equation

E, (Gu) = A (Gw) [Io(jw) + {w AP_l(jw,jy)Eo(jy)dy]. (3-21)

45



46

The magnitude of E,(jw) can now be compared to the specifi-
cations M(w). If E (jw) does not meet the specifications over
part of the frequency range, another compensation which will be
denoted Aj(jw) must be designed. In order to see the philosophy
behind the design of A;(jw) let the error which corresponds to

the Al(jw) design be written as
E1(37) = Eo(3y) + e1(3v). (3-22)
The equation which gives El(jw) can then be written

E; (Gw) = Ap(dw)
! ! (3-23)
[Io(jw) + {w AP”l(jw,jY)Eo(jY)dY +J AP‘l(jw,jY)el(jY)dY] .

-—00

The first integral in Equation (3-23) is obtained from Equation

(3-21) as
[ 8p7hGu, B Gy dy = Bo(w) - 1_(iy). (3-24)
00 Ao(jw)

The value of the second integral in Equation (3-23) is unknown;
thus, as with the assumption expressed in Equation (3-16) it is
assumed that

[ ert e, av)e (GGyddy = 0. ' (3-25)

Substituting Equations (3-24) and (3-25) into Equation (3-23) and

applying the specifications one obtains
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G| B, G|

126 G |

< M(w). (3-26)

This inequality is then used to determine Al(jw).

Second Iteration:

Step 1

Siﬁulate the design which was obtained in the first iteration
on an analog or digital computér and obtain the maximum value
of the‘@agnitude of the frequency domain representation of
the error which is denoted E,,(jw) for the freqﬁencies of

interest.

Step 2

Determine the maximum wvalue of Al(jw) from the relation

I Goy| < MW Gu)|  for  Egp(jw) > M(w)  (3-27a)
Eopm(Jw) :
1A G |2 Ay G | for B (ju) < M(w). (3-27b)

Employing equation (3-14) this relation can be rewritten as’

Eon(3w)

T S 7o W) + B G for Eon (ju) 2 M(w)
e (3-28a)
Txg%igyr < ]Po—l(jw) + Hl(jw)l for Egp (ju) < M(w).

(3—28b)
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Step 3

Determine the region of acceptable H(jw) in the complex plane

from Inequality (3-28) for the frequencies of interest.

Step 4

Determine an,Hl(jw) as a function of jw such that it lies
within the regions of acceptable H(jw) found in Step 3 and

such that |H1(jw)1 is as small as possible.

Step 5

Determine the prefilter G(jy) from Equafion (3-20).

The subsequent iterations are identical to the second itera-
tion. If the compensation can be designed to yield a stable
system at each iteration, the method will eventually yield an
acceptable design since |A(jw)| of each new design is smaller
than |A(jw)| of the previous design. The method itself implies
nothing concerning the stability of the system so that a sta-
bility criterion must be applied as a separate part of the
design. Any stability criterion which is expressed in the
frequency domain can be integrated into the design procedure by
using the criterion to modify the regions of acceptable H(jw)
while the basic procedure remains unchanged.

An example will now be presentedT The purpose of the
example is to illustrate the mechanism of the procedure so the
design itself will not be carried to completion. Discussion of

the important considerations in setting specifications and
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in choosing the desired transfer function and the nominal plant
is also given in this example.

Design Example One

Let the plant be described by the first order differential

equation
f(ﬁ)é(t) = y(t) (3-29)
where
£(t) = ky + ky [1 - e‘“(t‘T)] u(t-1) | (3-30)
and |
0.1 <ky 21

0.1 <kj +ky <1

0.1

1A
Q
IA
et
o

It is assumed thét.the.value of 1 is unknown. From the above
statement it is seen that the function f(t) can vary exponentially
between any value in the rangé from .1 to 1 with ﬁo restrictions
on when the variation can take place. A block diagram of the

system is shown in Figure 3.2.

Py
<
(@]

—— T £(t)e(t) = y(t)

Figure 3.2
Block Diagram of System in Example
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Let the desired step response be given by
colt) = (1-e™Bu(t).

In specifying c,(t) one should insufe that it is possible for
the plant to deliver such a response. That is, the designer
should insure that there éxists a reasonable plant input such
that the actual output of the plant will be close to the desired
output. This qualitafive check is an obvious one since no
amount of feedback can make the plant deliver what it is not
capable of delivering. For this example if the plant output

c(t) were to equal co(t) then the plant input would be given by
y(t) = £(t) e~tu(t)

which is a function that imposes no unreasonable demands, in
theory at least, on the compensations G and H. That is, y(t)
contains no impulses or derivatives of impulses.

A second consideration is the specification M. At high
frequencies the time-varying plant can be approximated by a

43

time-invariant plant™-~ so that at high frequencies IE(jw)I can be

rewritten

|g| = | BSR__ _ PoGR

< M(w). (3-31)
1+PH 1+ PH

The magnitude of the functions G, R, H, P, and P, must all go to

zero as w becomes large and since 1 >> IPHI then

50
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|E| # |P-P,| [6R| s M(w). - (3-32)
But by Equation (3-20) GR is chosen as
= -1 .
GR = (p,~1 + H)C, | (3-33)
so that

IEI = |(P"Po) [%_+ H]Col < M(w)
: )

or

P . i1+pPH-PH
P, - 0

< Mw). - (3-34)

Note that since Po is time-invariant then

-1 _
PQ =

W’H

Since |PH| << 1 and |Poﬁ1 << 1 then one can write

P(.lw) -1
P, (3w)

[E(jw) [= | Cotiw)| < M(w). (3-35)

From this formulation it is evident that M(w), Co(jw) and Po(jw)
cannot be chosen in a completely arbitrary manner if the specifi-
cations at high frequency are to be met, Note that if a poor
selection of M is made such that M goes to zero faste£ than Co at

high frequency, the specifications can never be satisfied at the’

higher frequencies. This difficulty can be avoided 1f M is
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chosen as a constant at high frequencies, With M as a constant at
high frequencies, the specifications can always be met by choosing
the magnitude of the feedback compensation H large enough to
satisfy the specifications over the lower frequencies (provided )
stability can be maintained) up to the point where Inequality
(3-35) will be satisfied by‘Co going to zero. Intuitively it
appears that there shoﬁld be no difficulty in letting M be some
arbitrarily small number at high frequencies although this may

not be true in all cases. At any rate, Inequality (3-35) must be
satisfied in the high frequency rangé.

The specification for the example must now be chosen.

Since frequency domain specifications have received little study
there is no definite basis on which to choose the specifications
for the example. Rather than attempt to relate time domain and
frequency domain specifications at this point, specifications
will be chosen arbitrarily. Let M for the example be chosen as. a

constant of value 0.06. 'Thus
| M(w) = 0.06
so that
[EGw | = [c(w) - ¢ (Gw)]| < 0.06

The nominal plant P (jw) must now be chosen. No definite
rule can be deduced concerning the selection of Po(jw); however,
a guide line can be determined upon examination of Equation (3-13).

Equation (3-13) can be written in the form
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E(jw) =
V -]
2G9S [P - re e | [ optm + E(jw] ay .
The object is to choose ]A(jm)l'as large as possible and still
have IE(jw)] fall within specifications. Obviously, the smaller
the value of the magnitude of the integral, the larger Ikkj&)l-’
can be for a given-IE(jw)I.' Tﬁe nominal plant Po-l(jw,jy)
should bé chosen such that the magnitude of the integral will be
as small as possible. | |
The design equation for this example will now be determined.
Note that the differential equation describing the plant is in
the general form of Equation (2-9) so that the frequency impulse
resporise of the inverse plant is evaluated as-shown in Equations
(2-10) and (2-11). ‘The frequency impulse response‘of the inverse

plant is found to be

“lys = . k
P~L(Gy,50) = jefk; + 53] §(Jy - jw)

jy = ju  Jy - ju +.a

: i om(dy - jw)t
| 4+ Jw € 1 - 1
2%

The nominal plant must now be determined. Let the transfer
function of the nominal plant be giﬁen by P,(jw). Referring to .
Section 2.2, since the nominal plant is time-invariant, the fre-

quency-impulse response of ;he nominal plant is given by

P, Gy d0) = 2 l(Gw) s Gy - Jw)
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so that AP~l(jvy,jw) is found to be

2P~1(3y,j0) = [[kl + EEJ.jw - Po'l(jw)] §(3y - jw)
2

+ Jukpe=(JY - Ju)a 1 - 1 , (3-36)
2 Y- du Iy -doFa

Substituting the above expression for AP‘l(jy,jw) into Equation

(3-13) and rearranging terms, one obtains

mw)mpfﬁjww@ﬂ=—ﬂh+ﬁ]w—%*mﬂ%@w
2 2

+ fm kze‘(jY - jwt [ 1 - 1 ] C(jw)dw.

—e 2m Y- Ju 3y - ju * a
It is deéired to select Po"l(jy) such that the magnitude of the
right hand side of this equation is as small as possible. The
only term in the equation that involves Po—l(jw) is the first
term on the right hand éide. The possible values of the second
term which is the integral term are not known so that the "best"
Po‘l(jw) cannot. be determined. As an alternati#e Po'l(jw) will
be chosen such that the magnitude of the first term will be a
minimum. Since kj + k9/2 can range from .l to 1, the nominal
plant is chosen to fall half way betwéen 1 and 1 or
Po"1(jw) = 0.55jw. Thus AP"1(jv,ju) is given by Equation (3-36)
with P_~1(jw) = 0.55ju.

The first step in the first iteration of the design procedure

is to determine Io(jy) which is given by



I,3y) = f AP_I(jY,jw)Co(jw)dw

or

[e]

o .
I,Gy) = f PlUv.ae)c Gude - [ PTI0Y,Je)Co(Guide.  (3-37)
The first integral in Equation (3-37) is the Fourier transform of
the input to the plant when the plant output is ¢, (t) and the
second integral is the Fourier transform of the input to the
nominal plant when the output is c,(t) so that the expression for

I,(jy) can be written as

1,Gy) =/ [(kl - 0.55)
+ kg [1 - emalt - I)]u(t- T)] e~tu(t)e IYtde.

Evaluating this integral one obtains

-

kp - 0.55 41, 1 et ] T<0
‘ jw + 1 | ju + 1 jw +o + 1]
I, (jv)=
4 1. _
k; - 0.55 ko 1 _ 1 e (1 + jw)t >0
jw + 1 | jw + 1 jw 4+ o+ 1
) (3-38)

The second step in the first iteration is to determine the
regions in the complex plane for several frequencies of interest

such that H(jw) falling within these regions insures that
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Inequality (3;27) is satisfied. Inequality (3-27) can be

written as

lIo(jw)l . < M(w) = 0.06
|p,~1(50) + H(jw) |

which is equivalent to

TG | 2o

|1 + P (jw)E () |

0.06

Letting
P (jw)E(jw) = L (jw)
the inequality can be expressed as

11,0 | [Py (Gw) |

0.06

< Il + Lo(jw)[-

The problem now becomes that of determining acceptable regions for
L,(jw). Notice that the acceptable regions of Lo(jw) take on the
form of circles in the complex plane centered at the point -1

and having radius equal to IPO(jw)I |Iom(jw)|/0.06 where |Iom(jw)|
is the maximum value of [Io(jwl for the particular frequency of
interest. Using a digital computer,ithe.maximum value'of I,(jw)
was obtained from Equation (3-38) for values of w equal to 0.5,

1, 2, and 5. The boundaries of the acceptable regions of L,(jw)

for these values of L,(jw) are shown plotted in Figure 3.3. Note



57

A Im
w=5
4 ' } { /-\ -
-10 -5 5 Re
e
2 W=
1 T -3
/
w=1
T -j10
.5
—
w=,5
T-315
Figure 3.3

Boundaries of Acceptable Regions of L(jWw)
with Polar Plot of Lo(jw)



that the acceptable regions of L,(jw) lie on the outside of these
circles. The third step in the design procedure is to determine
a Ly(jw) which will just lie within the acceptable region found
above. The function selected for Lo(jw) is

L, (jw) = 24 .8(jw + 2)
jw(je + 1) (Gw + 4)

and 1s also shown plotted in Figﬁre 3.3.

The fourth and final step in the first iteration of the
design procedure is to determine the prefilter G(jw) from the
equation

6Gu) = [1 +LoGw)] ol (3-39)
Py (GJw)R(jw)
This is a straightforward matter of substituting L, (jw) ,P5(jw),
and C,(jw)/R(jw) into the expression for G(jw) and simplifying.
The expression for G(jw? was found to be

G(juw) =0:55(jw)® + 2.75(jw)? + 18.56(jw) + 32.73
(Ju)3 + 6(jw)? + 9(ju) + 4

In order~to determine whether or not this design actually
meets the specification, the system was éimulated on an analog
computer and |Eo(jw)| was obtained at selected frequencies for a
number of step responses using different values of ki, kg, o
and T . The values of IEO(jw)I were determined directly from
the anélog computer using the method presented by Dick and

Wertz4% for obtaining the Fourier transform of a signal on an
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analog computer. An ehvelope of the maximum values of IEo(jw),
is shown plotted in Figure 3.4. Observe that.the specifications
are not met and that a Second iteration musf be madé.

The first step in the second iteration which is the simu-
lation of the design and the obtaining of IEo(jw)] has been
accomplished. Thé second iteration will start directly with the
second step. The second step in the procedure is determing the
values of ]Po'l(jw) + Hl(jw)l such that Inequality (3-28) is
satisfied for a ﬁumber of frequengies;of interest. Inequality

(3-28) can be written in the following form

|1+ Lc»(j‘”)l |E°(jw)| < |1 + L1 (Gw) | for IEO(jw)| > M(w)
M(w)
|1+ 1,Gw] < |1+ 1G] for |E0(jm)] < M(w)

which, for this example, becomgs

1+ LoGo) | [EoG) | < |1 + 1y (Gw)| for |Ey(jw) |

> 0.06 (3-40a)
0.06
1+ L Gw)| 2 [1+L1Gw)] for |Ey(jw)| < 0.06. (3-40b)

Note that the left hand side of the above ineqﬁalities can éasily
be determined from the plot of TEom(jw)l shown in Figure 3.4 and
the plot of Lo(jw) shown in Figure 3.3. |

The third step is the determination of th¢ regions of
acceptable values of Ll(jw) in the complex plane. These regions

ére found from Inequalities (3-40) and are shown plotted in
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Figure 3.5

Boundaries of Acceptable Regions of Ll(jw)
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Figure 3.5 for several values of w. The boundaries take on the
form of circles centered about the point -1 with radius equal
to the larger of the two values ll + Lo(jw)l IEom(jw)|/0.06 or
ll + Lo(jw)|. The acceptable regions lie on the outside of these
circles.

The fourth sfep is determining Lj(jw) such that it lies
within the acceptable regions found in step three and is as small
in magnitude as possiﬁle. The Lj(jw) which was selected is

476 (ju + 1.5) [(Jw)2 + 6(ju) + 36]
L1 (J0) = Ju(jo + 1) [(Gw)2 +12(jw) + (12)2]§w + 12)

The polar plot of this function is shown in Figure 3.6.
The fifth and final step in the second iteration of the
design procedure is determining G(jw) from Equation (3-39)

which was found to be
G(jw) =

.55(jw) 5+ 13.75(jw)" + 433.4(jw)3 + 3,072(jw)? + 12,732jw + 14,138
GGw) 5+ 26 (Jw)* + 337(jw)3 + 2,328(jw)? + 3,744j0 + 1,728

This completes the second iteration of the design procedure.

In order to determine whether or not this design meets
specifications, the system was simulated on an analog computer and
lEl(jw)I was found for a number of step responses corresponding to
different values of ky, ky, a, and T at selected frequencies. The
envelope of these is shown in Figure 3.7a. It is seen that the
specifications are satisfied; thus, the design may be considered

acceptable,
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Although this completes the first example, some comments
are in order. Even though the system meets specifications it
must be noted that the design is not necessarily the best design
possible. As has been pointed out, the best design is that
design which will meet specification with as small a value of
H(jw) as possible in order to minimize the noise transmission
from the plant output to the piant input. When the best design-
has been obtained the'design inequalities will become equalities
except at high frequencies. In a system where it is particularly
important to have lH(jw)l as small as possible, more iterations

‘may be made using the inequality

|1+ LoGw)| B (Gw) |

M(w)

< 1+ Ll(jw)l

for all valués of w. The subscript zero represents the present
design and thevsubscriptlgne represents the subsequent design.
Using this procedure the designer should be able to gain con-
siderable insight into a particular system and thus arrive at a
design which is closer to the best design. It should also be
noted that system stability was not considered in the example.
If an applicable stability criterion is determinéd, the criterion
will place restrictions on H(jw) which can then be incorporated
into the procedure by modifying the aéceptable region of H(jw) or

equivalently L(jw) in the complex plane.
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A second design example will now be presented which 111us-
trates a modification that can be made in the design equation
although the procedure basically remains unchanged.

Design Example Two

The plant of this design example is described by the second

order differential equation

g(0)%(E) + £()x(E) = y(¢t)

where
£(t) = By + Fp(1 - 726 T Tyute - 1))
g(t) = Gy + Go(1 -~ e®(t = To)yu(e - T,)
and
0.01 <G <1 ; 0.01 <Gy +Gy =1
0.1 5F1§0.25; 0.1 _<_F1+F250.25
0.1 <a <10 ; 0.1 <b <10

It is also assumed that T and T, are unknown. The desired step

response is given by

_ co(t) = [} - e“l'atcos(1.414t) + 0.98 sin(l.414t)] u(t).

- The frequency domain representation of co(t) is

4
jw [(jw)2 + 2.8jw + 4]

C, (u) =



The specifications are arbitrarily chosen as

M(y) = Max]| 5 : 0.01
l(jw + 1) (Guw + 5)

A plot of these specifications for low frequency is shown in
Figure 3.7b. Note that the specifications‘are consistent with the
considerations discussed in Examplé One. That is, the desiréd
plant output does not impose unreasonable demands on the plant
input and it is possible for IH(jw)l to go to zero at high
frequency and still meet the specifications since M(w) goes to a
constant value at high frequency. Following the procedure

illustrated in Example One, the nominal plant was chosen as
P,-l(jw) = 0.505(jw)? + 0.175jw

and the frequency impulsé response of the inverse plant was

found to be

P-1(jy,jw) = [(Gl + gb'(jw)z + (Fp + F2 330 | 8GY = j)

Gwy2 e~y = Jwity 4 jue~(Jy = JuiTy

21 (3y - jw)

(jw)2 e'(jY - jw)T]__jm e—(jY - jw) . (3-41)
2r(jy - jw +b)  2n(Jy - ju + a)

Let the portioh of P'l(jy,jm) which is multiplied by §(jy - jw)
be denoted by Pa'l(jw). Note that Pa_l(jw)é(jy-jm) has the form

of a time-invariant plant (see Section 2.2), while Py~l(jy,jw)



represents a time~varying plant. Thus, separating the‘frequency
impulse response of the inverse plant into cpmponents
Pa”l(jw)é(jy - jw) and Pb'l(jy,jw) effectively separates the
plant into its time-varying and time-invariant components.

The function AP~Ll(jy,jw) can now be written as
AP~ L(y,d0) = Pl(y,50) - PomlGy, dw)
or

a3y, g0 = [Pa"l(jw) - Po'l(jw)] §(3y - jw) + Pyl(iy,w).
(3-42)

Figure 3.7b
Low Frequency Specification
Of Design Example Two

The design equation, Equation (3~13), can be written as

68



1 (2]
PGy = iy I [eouw v EGw ] @ .

(3-43)

E(3Y) =

Substituting Equation (3-42) into Equation (3-43) one obtains

o

-1 _
EGY) = ~T(Gy) + HGY) {w [Pgl(jw) - Pgl(jw)‘] 8 (3y=3w)E(jw)dw

S

+ [ 0Pl Gu,inC GGy de + f Pb”l(jY,jw)E(jw)dw] (3-44)

-00

Evaluating the first itegral and solving for E(jy), Equation

(3-44) can be written

E(iy) = A(iy) [Io(jv) + f Pb'l(jv,jw)E(jw)dw] (3-45)

where

[ 8215y, 30) Co (fu) dw (3-46)

00

I

I,(3v)

and

-1 . . (3-47)

- A (dy)
' P~l(Gy) + HGGY)

This equation can now be sﬁbstituted in place of Equation
(3-13) in-the synthesis procedure. The advantage in using
Equation (3—45) can be seen by comfaring the terms which are
ignored in the first step of the first iteration. By using

Equation (3-13) the entire integral
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[ 2P~ (50, 37)ECIY) dy

-0

is assumed equal to zero (see Equation (3-16)), while by using

Equation (3-45) only the term
{ BTGV, 0 EGe) de
is assumed equal to zero.
The first step in the design procedure is to assume

/ r hGy, 3w EQw e = 0 (3-48)

then apply the specifications to E(jy) as follows
[EGY) | = [AGMI G| < My
Using Equation (3-47) this can be written

TG | < 2,7 Gy + HGY)
M(y)

. : (3-49)

Note that both Io(jY) and Pa'l(jY) dépend upon the plant parameters
so that the ranges in the complex plane of both of these functions
must be considered in determining the acceptable range of H(jy).

It must be observed at this point that I (jy) and Pa'ltjy) are not
independent. However, to simplify the task of determining the
acceptable regions of H(jy) from Inequality (3-49) it will be

assumed that I,(jy) and Pa"l(jy) are independent. This assumption



should not introduce any more error than is inherently present in
the first iteration due to the assumption expressed in Equation
(3-48).

Since Pa'l(jw) is obtained by inspection from Equation

(3-41), it only remains to determine I,(jy) which is given by

I (5y) = f AP71(3y,3u)Co (jw)du

-—00

or

o] - [ve]

I,(y) = [ P~lGy,jwc (Guw)dw - f Po'l(jv,jw)Co(jw)dw-

-00 .

This is equivalent to the Fourier transform of the plant input
with the plant output equal to co(t) minus the Fourier transform
of the nominal plént input with the nominal plant output equal to

¢y (t) . Thus, I,(3v) is given by
I, GY) = f {[é3 + Gz[l - e (t = 1)) ] u(t - Tz)]

[4e-1~4tcos(1.414t) - 3.96e-1-4tsin(1.414t)] u(t)
+ [F3 + Fz[l - emalt - Tl)] u(t - ’['1)]
[5.83 e~l.btgin(1.414t) u(tir} =Yt 4t

where

Gy - 0.505

(o]
w
L]

71
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and

F3 = F1 - 0.175.

Performing this straightforward but lengthy integration, a compli-
cated expression for Io(jy) is obtained consisting of four
functions for different ranges of 77 and Tye This expression is_
given in Appendix B.

The second step.in the synthesis procedure is to determine
the regions in the complex plane at- selected frequencies which
correspond to I (jy) and Pa;l(jé) for different values of the
plant parameters. From these two regions corresbonding to
1,33Y) and.Pa_l(jY) one can determine acceptable regions of H(jy).
This was done for vy equal to 1, 5, 10, 20, 30, and 50. The
resulting acceptable regions for H(jy) are shown in Figure 3.8.

The third step is to select an H(jy) which falls within the
acceptable regions determined in Step 2. Because of the limited
size of the analog computer available, it was necessary to limit

the feedback compensation to third order. The compensation which

was chosen is

H(jy) = 31.54 Gy +0.5) (iy +5) iy + 50)
GGy + 2) Gy + 30) (v + 80)

The polar plot of H(jy) is also shown in Figure 3.8.
The fourth and final step in the first iteration is the
determination of the prefilter G(jy) from Equation (3-28) which

was found to be
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S G(3Y) =

2(47)5 + 227GV + 5497(5y) 3 + 1853(4y)?% + 38367iy + 15769
(GGY)S + L15GY)" + 2938(5y)3 + 12584(3v)2% + 239203y + 19200

The system was simulated on an analog computer and'E(jy)
was found for a number of step responses corresponding to
different values of the plant parameters. The envelope of the
maximum value of these E(jy) is shown plotted in Figures 3.9a
and 3.9b. Observe that the specifications are met except at
very low frequencies. This illustrates the basic procedure so a
second iteration will not be made. Note that |E| is reasonably
close to the specifications except at low frequency. Thué, the
second H woeld be similar to the first except for a higher gain
at low frequencies.

Although the designs in the two examples were not carried to
completion, it appears that there is no difficulty in carrying’out
the steps in design procedure one. It remains to be seen how
easily a design that is close to optimal can be achieved through
the procedure. A basic assumption in the procedure is that the
regions of acceptable L(jw) are circular as shown in Figures 3.3
and 3.5, In the second example it was possible to arrive at
acceptable regions which were not circular; however, this was only
true for the initial design. It would be necessary in'subsequent
designs to assume circular regions. If the regions of acceptable
L(jw) are, in fact, circular,.especially in the region of L{(jw),

then the design procedure should lead to a design that is close

74
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Specifications

|EGw)]

Figure 3.9%9a
Envelope of IE(jw)I for 0 < w< 10

.04 1

Specifications

+
T T g —
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Figure 3.9b
Envelope of lE(jw)| for 10 < w< 20
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to optinal. If the assumption of circular regions is grossly in
error, it would be more difficult to arrive at a design which is
close to optimal.

The second design procedure will now be presented. Like the
first procedure, the second procedure is an iterative process.
However, the assﬁmption fhat the regions of acceptable L are
circular is not made in the second procedure so that a design
which is close to optimal may be able to be obtained in a more

straightforward manner than is possible in the first procedure.

3.3 Synthesis Procedure Two

The procedure is similar to the synthesis procedure presented
by I. M. Horbwifz45 for time-invariant systems having ignorance,
with the exception that iterations must be performed for a time~
varying system. In this procedure the specifications are given

in the form

(ST € | < ko, _ (3-50a)
Cq (jw)
81 < arg [C(jw) - Co(jw)] < 8,. (3-50b)

The design equation for this procedure will now be developed.

Referring to Section 2.4, the system is described by the equation

'

H(jw)C(jw) + Y(jw) = G(jw)R(jw)

where Y (jw) is the Fourier transform of the input to the plant.
Factoring C(jw) from the left hand side of the equation one

obtains
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HGw) + 29 1 6 6iu) = 6(j)R>w) . (3-51)
C(jw)

Under the conditions that the plant is at its nominal time-

invariant value the system will be described by the equation

Hjw) + — L | ¢ (ju) = G(jw)R(Hw) . (3-52)
 Po(fw) ~

Dividing Equation (3-51) by Equation (3-52) one obtains

[H(Jw) + —SJ—)] C(jw)
Cjw) =1,

. 1 ,
[H(Jw) + Po(jw)]co(JM)

Multiplylng the numerator and denominator of the right hand side

by P (Jw) and lettlng
P (GuIHGw) = Ly (ju)
the equation can be written

Cliw) = 1+ LoGw)

NE
o(Jw) Cng; Po(Jw) + Lo (jw)

. (3-53)

Letting the ratio of the plant output to the plant input be -

denoted by

P (jw) = __(.L_)
e Y(jw)
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Equation (3-53) can be written

C(jw) = 1 + Lo (w)

Co(juw) By (jw) :
° Peq(jw) * Lo (3w

For the time-invariant case with ignorance Peq(jw) is the

transfer functioﬁ of the unknown time—invariant plant, Using the
procedure presented by Horowitz, it is possible to determine
acceptable regions for L,(jw) from the region in the complex plane
corresponding to the possible values of Peq(jw). For the time-~
invariant case the values of Peq(jw) are dependent only upon the
plant parameters so that knowing the ranges of these plant
parameters it is possible to determine the range of Peq(jw) in

the complex plane. However, for the time-varying case Peq(jw)

is dependent not 6nly upon the plant and ité variations but also
upon the plant input which in turn depends upon the feedback
compensation H(jw). \Thus, Peq(jw) depends upon L,(jw) in the time-
varying case. This presents difficulty since Lo(jw) is not known
prior to the design.

To circumvent this difficulty an iteration procedure is
employed where an initial design is made and tested. If the
specifications are not satisfied, a second design is made based
on the rggion of Po/Peq corresponding to the first design. If
additional designs are required, each is based on the regions of
PO/Peq corresponding to the previous design. In this scheme the

designer must use his judgment because there is no guarantee that
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the procedure will lead to a satisfactory design if mechanically .
followed. Intuitively, however, it appears that the proceduré
should lead to a satisfactory design. If large changes in H are
required, the procedure will at least call for changes which are
in the proper direction to improve the design. If relatively
small changes iﬁ H are néeded, the regions of Po/Peq should show
little change from one design to- the next so that regions of Po/Peq
which are very close to being correct will bevused in the design
with the result that a proper design will be made. It is con-
ceivable that difficulty could . arise in starting with a design
which requires large modifications in H. There is nothing in the
procedure which prevents an oscillatory effect. That is, the
first dgsign may require a large increase in |H| and the second
design may call for a large decrease in |H|fback to the fifét
design. Of course, in such a case the designer would apply his
judgment and not decrease IHI as much as specified. It is
important that the designer consider all previous designs and

their cbrrespohding regions of P /P when making a new design to

eq
avoid one that is similar to a design which has previously been
shown to be unacceptable.

The steps in the second design procedure will now be
presented. As in design procedure one, the initial degign is a
starting point for the iteration procedure. As was discussed in
design procedure one, the initial design may be any stable design;

however, it would be better to start from a more definite design

such as one based on a time-invariant plant with ignorance. The



approach to obtaining an initial design which is given is based
on the assumption that the plant output is the desired plant
output for all variations. It is also assumed that the time-
variations are known as functions of time so that analytical
calculations can be made.

First Iteration

Step One

Assuming that
C(jw) = C,(jw)
determine Po(jw)/Peq(jm) from the expression

Po(Gu)_ Po(Jw)Y(jw) _ P, (juw)

Peq(jw) Cq (w) Co(jw) -=

for a number of frequencies of interest. Plot the range of

Po(jw)/Peq(jw) in the complex plane for the possible plant
parameter variations.

Step Two

Using the procedufe outlined by Horc;witz45 determine the
acceptable regions of L,(jw) at a number of frequencies of
interest and design a Lo(jw) whiéh falls within these
acceptable regions.

Step Three

Determine the prefilter G(jw) from the relation

G(jw) = [1 * Lo<jw>] Co (3w (3-56)

Po (Jw) R(jw)

[ PlGedne,Gvdy  (3-55)

80
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The preliminary design~is now complgte.

This first design is simulated on a computer in order to
determine whether or not the system satisfies its specifications.
If the preliminary design is unsatisfactory, which presumably it
will be, a second iteration must be made.

Second Iteration

Step One

From the computef simulation of the prevfous design, determine
the range of PO/Peq in the complex plane for the possible
plant parameter variations.

Step Two

Repeat steps two and three of the First Iteration.

Subsequént iterations are made until a satisfactory design is
obtained; It should agaiﬁ be emphasized that the designer must
consider not only the ranges df Po/Peq corresponding to the last
design, but also the ranges corresponding to all previous designs.
What the designer must guard against is an iteration leading to a
design which has previously been found to be unsatisfactory. There
is nothing inherent in the design procedure‘itself which prevents
such an occurrance so the designer must consider ail previous
ranges of Po/Peq in each new design. An exmmple illustrating this
synthesié procedure will now be presented. Again, the pﬁrpose of
the design is_to illustrate the procedure rather than arrive at an

optimal design for the particular system considered.
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Design Example Three

The plant which was considered in Design Example Two will be
used in this example. Since a design was made in Design Example
Two, it will be of interest to compare the regions of
Po(jw)/Peq(jw) witﬁ the Lo(jw) which was obtained in Design
Example Two. In.order to utilize the deéign of Design Example
Two, the specificatiops of that example must be put in a form
compatible with this design procedure. That is, the specifica~

tions must be put in the form

kl by 'g'm')"" = kz (3—57&)
Co(Fw)
o < Arg [Cu) - Co ()]s o, (3-57b)
instead of the fofm
IC(jw) - Co(jw)l < M(w). . - (3-58)

Note that Inequality (3-58) defines a region in the complex plane
in which C(jw) must fall. Likewise, Inequalities (3-57) also
define a region in the complex plane in which C(jw) must fall.
The specifications are given in Figure 3.7 so that one must.
determine the valués of ky, k2, 67, and 65 such that the.region
defined by Inequalities (3-57) corresponds to the region defined
by Inequality (3-58). The shapes.of the two regions are not the

same so that values of kj, ko, 6y, 65 can only be chosen such that

the region defined by Inequalities (3—57) is approximately the



same as the region defined by Inequality (3-58). The values which
transfer the specifications of Figure 3.7 to specifications which

can be used with Inequalities (3-57) are listed in Table 3.1.

1 2 2
1 .36 - 1.55 _ 350 ~-35°
5 0 3.6 ~180° 180°
10 0 1 -180° - 180°
20 0 24 _ -180° 180°

100 0 2.5 (10)° ~180° 180°

400 0 1.6 (10)7 ~180° 180°

500 0 3.1 (10)7 -180° 180°

Table 3.1

System Specifications

The first step of thé first iteration 1is to determine the
range in the complex plane of the values of Po(jw)/Peq(jm) under
the assumption that C(jw) = C,(jw). The expression for
Po(jw)/Peq(jw) is given in Appendix C. The regions in the com-
plex plane cofresponding to the values of Po(jw)/Eeq(jw) for w
equal to 1, 10, 20, 100, 400, and 500 are shown in‘Figures 3.10a
and 3,10b.

Step two of the procedure is to determine the acceptable
region for Lo(jw). Using the specifications given in Table 3.1
the acceptable regions for L_(jw) were determined from the regions

shown in Figures 3.10a and 3.10b. These acceptable regions for

83
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L,(jw) are shown in Figures 3.lla and 3.1lb. Also shown on the
figure is the polar plot of Ll(jw) which was designed in Design
Example Two. It is known that this compensation satisfies the
specifications except at very low frequency; however, it is seen
from the figure that Ll(jw) does not fall within the acceptable
regions, Two conclusions can be drawn from these figures. The
first is that at least for this p;oblem the approximation

Clw) = Co(jw) is a poor one. The second is that a compensation
which is designed on the basis of these acceptable regions will in
all probability more than meet the specifications since its
magnitude would be considerably larger than the magnitude of

L; Gw) .

A second iteration will now be made. However, instead of
designing a compensation based on the regions of Figures 3.1lla
and 3.11lb the Ll(jw) which was designed in Design Example Two
will be used. The system was simulated on an analog computer and
C(jw> and Z(jw) were evaluated from this computer simulation for
a number of variations of g(t) and f£(t). The values of
Po(jw)Z(jw)/C(jw) for these variations were then plotted in the
complex plane. This plot of points was used to determine the
range of Po(jw)/Peq(jw). These ranges" of Po(jm)/Peq(jw) were
determined for values of y equal to 1, 5, and 10 and are shown in
Figure 3.12. The range of Po(jw)/Peq(jw) for higher fréquencies
could not be determined due to practical limitations of the analog
computer available. These ranges were nekt used to determine the

acceptable regions of L (jw) which are shown in Figure 3.13.
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A polar plot of Lj(jw) is also shown in Figure 3.13. It is
first noted that Ll(jw) evaluated at w equal to one does not fall
within the corresponding acceptable region for Lo(jw). This is
not surprising since the specifications in the lastAexémple were
not met at low frequency using Ll(jw). However, at w>eqﬁal to
5 and 10, L (jw) does not fall within the corresponding acceptable
region even though it is known that Ll(jw) does meet the spécifi--
cations in Design Exaﬁple Two at these frequencies. This_is
partially due to the fact that the specifications listed in
Table 3.1 are not exactly equivalent to the specificationé given
in Figure 3.7; however, the ﬁfimary error comes from the analog ‘
computer calculations and in determining the region of
Po(jw)/Peq(jw) from these calculations.

Thé next step in the procedure would be to desién a second
L, (jw) based on the regions shown in Figure 3.13., Such a design
will not be carried out:since the basic method has been illustra-
ted; however, note that the magnitude of Lo(jw) of such a second
design would be greater than the magnitﬁde of Ll(jw). Thus, a
second design would be a step in the right direction toward

meeting the specifications as given in Table 3.1.

3.4 Summary

Two design procedures which rely on the_numerical.soiution of
the system equation via computer simulation have been presented.
Simple design examples have also been carried out which demon-

strate that it is possible to perform the required steps in the



procedures; however, an optimal design has yet to be obtained.

It is of interest to consider the similarities and differ-
ences in the two procedures. Even though the procedureé appear
to be quite different they are actually very much alike. Note
that in both procedures the design of fhe nominal loop géin L,
is carried out in the same manner in that acceptable regions are
determined and an L, is designed to fall within these acceptable
regions. Also, it is'shown in the next chapter that the specifi-
cations for the two procedures can be made identical. Thus, the
only basic difference.in the two procedures is that in proce&ure
one it is assumed that the shaﬁe of the regions of acceptable Lo
are circular, while in procedure two the shape of the regions of
acceptablézLé are determined in the procedure itself. Observe
that becéuse of this assumption procedure one is more easily
applied than procedure two. In procedure one it is only necessary
to determine the maximum value of |E| while in procedure two it is
necessary to determine the complete region of Po/Peq° It is seen
in the next chapter tﬂat the price paid for the simpler calcula-
tion in procedﬁre one is the greater difficulty in arriving at an
optimal design.

A major difficulty in the procedures.is the determination of
the maximum value of |E| and the region of Po/Pe . The method

q

which is presently employed is to run representations of all

.

possible time-variations. Unfortunately, even where there are
only one or two time-varying parameters a large number of runms

are required. If a system has several time-varying parameters,

92



93

the number of combinations of time-variations are prohibitively
large to test representative samples of all possible time-
variations. Thus, for systems having several time-varying
parameters a procedure is needed for determihing the wdrst case
variations without having to perform a search over all possible
variations.

In this chapter the examples demonstrated that it is possible
to carry out the steps in the procedures using numerical solutions
from computer simulation. However, the examples do not have the
depth necessary.to observe the advantages and disadvantages of
the procedures nor do they illﬁstrate how a design close to the
optimal design may be obtained. In the next chapter the design
of a system having a time-varying gain is carried out in depth

so that greater iﬁsight into the procedures can be obtained.



. CHAPTER IV
DESIGN EXAMPLE

4.1 Introduction

Previous examples have demonstrated the steps in the two
design procedures.with little consideration given to the practical
problems encountered in carrying out these steps or of the perform-
ance éf the system involved. In ghis chapter a design example will
be considered with greater depth of study in an effort not only to
gain further insight into the design-procedures but also to consider
the practiéal problems associated with the procedurgs, as well as to
investigate the performance of the system. The examplé which will

be considered is shown in Figure 4.1.

R C
+ Z
—>— G(s) >—1—> £(t) f>- 1 ———
- s(s + 2 Y
s N
H(s) —
Figure 4.1

Design Example
The function f(t) is a time-varying gain which can vary between 1
and 10. The general structure of f(t) will be discussed in more
detail later in the chapter. Although this exampie may appear
rather restricted, note that it is a special case of a more general
class of systems where the only time-varying element is a time-

varying gain as shown in Figure 4.2.
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Plant Plant
Input Output

Y

Figure 4.2
General Structure of Plant Where Only
Time-Varying Element Is a Gain
The portions of the plant P} and P, are linear and time-
invariant with the time-varying gain represented by f(t). Although
P1 and Py are integral portions of the plant and cannot be modified
by the designer, any system having such a plant can.be put in the

form shown in Figure 4.3 so that Py and Py can be considered as

integral portions of the compensations G and L.

R . + Z _C C
= G=eP; PP @) [T ey P
L=P{HP,

Figure 4.3

General System with Time-Varying Gain

In addition since Pz(s) is a known transfer function at the
system output, system specifications on C can be obtained from the
system specifications on C. The portions of the plant Py and Pos
therefore, need not be considered in the study of the time-varying
characteristics of the system. Also, since G(s) is primarily a
prefilter, the salient properties of the class of systems which
have only a time-varying gain can be investigated by considering

only the time-varying gain with a feedback loop for compensation.
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Results of the design example shown in Figure 4.1 can thus be
applied to the more géneral class of systems as shown in Figure 4.3
where f(t) varies by a factor of ten. The transfer function:has
been included in the plant of the example so that the wave forms of
the time-invariant system will be familiar and the effects of the

time-variation will be more clearly evident.

4.2 Methods of Calculations

Since the design procedures require numerical calculations éf
the Fourier transférm for various signals in the system, it was
necessary to derive a method for performing these calculations.v Due
to the fact that both design p?ocedures require a.Search over the
possible timg variations for several frequencies, any method used
mus£ not only be accurate but also must be able to be performed
quickly in order that a fairly large number of calculations may be
made within a reasonable period of time.

The first approach was to simulate the system on an analog
computer and calculate the required Fourier transform directly on
the computer. This technique, which is described in Reference (44)
is relatively fast and the results are satisfactory as long as the
value of the Fourier transform is above the noise level of the
computer and the run time of the computer can be accurately timed.

A disadvantage of this approach is that a separaté run is required
for each value of frequency unless a large computer is available
with at least six amplifiers for each frequency of interest in
addition to thé system simulation requirements. A major difficulty
in analog computation, howéver, is the synthesis of time variations.

The method of producing variations must be of such precision that
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the variations can be duplicated for repeated calculations of the
Fourier transform at different frequencies, yet it must be flexible
enough so that the characteristics of the variations may be Quickly
altered. The ability to precisely control and quickly: change
exponential variations on the analog computer is the primary reason
for these type variations in the examples of the previous chapter.
The computef system used for this first approach consisted of a
Beckman 2200 analog computer and an SDS mode1‘920>digital computer
which had been combined into a hybrid system. The Beckman analog
computer is a fully shielded, solid state? * 100 volt machine. The
particular configuration consisped of a total of 36 amplifiers and
four multipliers along with a complement of logic and an accurate
real time clock. In addition, there were sufficient servo potentio-
meters to provide satisfactory hybrid operation. The SDS digital
computer had an 8K storage with é high speed paper tape reader and
teletypewriter input-output.

Use of the analog cémputer alone proved to be, on the whole,
unsatisfactory. It is required that the operator make each run, and
read and record the values of the calculated Fourier transform.

This in itself is a lengthy procedure; but, in addition, calcula-
tions must be made on each data point and the result plotted. The
entire process proved to be extremely lengthy.

By utilizing the full hybrid capabilities of the cbmputer,
calculation times were significantly reduced. The digital computer
was programmed to change the time variations, control the analog
computer, read the computed values, perform the required calculation,

and print the results. Thus, many more calculations could be
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performed with the hybrid configuration in a given time than with
the analog alone.

The analog computer's method of calculating the numerical
Fourier transform proved satisfactory for the first design procedure;
however, in the second design procedure difficulties were encbun*
tered with this method of computation. In the second design pro-
cedure it is necessary to compute the Fourier transform of the
system output. Since the systemvinput is a step function, the
system output generally goes to a coﬁstant value which will be
denoted C;. .In such a case the numerical computation methods yield
the sum of the Fourier transform and the constant Cy. Thus, in
order to determine the Fourier transform it is necessary to subtract
the constant G, from the computed result. For the majority of
frequencies it was'found that the difference in Cg and the computed
results was small. This means tﬁat the inaccuracies, which are
small in comparison to the large value of thé compufed result, are
large when compared to éhe small value of the difference in C_ and
the computed result. Thus, in many cases it was impossible to
obtain an accurate value of the Fourier transform of the system
output with the analog method of computation.

In an effort to eliminate this problem with the second design
procedure, it was decided to use the digital computer to calculate
the numerical Fourier transform instead of the analog computer.

This approach would allow for a more accurate computation of the
transform. The procedure was to simulate the system on the analog
computer, sample and store the sample values of the signals of

interest, which in the case of: the second design procedure are the
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plant input and plant output, then compute the values of the Fourier
trans form at the frequencieé of interest. The algorithm described
in Reference (48) was used to compute the numerical Fourier trans-
form of the sampled signals. At this time the system was simulated
on an EAI-TR20 analog computer with a PDP9-L digital computef being
used to sample the signals and perform the numerical calculations.
The combination could not be considered a hybrid computer since the
digital computer could not be uséd to control the analog computer.
Although a number of calculations were performed on this set of
computers, the attempt on the whole Qas considered a failure. The
lack of success was not due to the methods of computation which were
basically sound but to the inadequacy of the computers themselves.
This attempt illustrates the fact that relatively sophisticated
computers are requiréd for the necessary computations in the two
design procedures.

The necessary simulations and Fourier transform calculations of
the example in this chaﬁter were done ﬁholly on a digital computer.
The computer used was an IBM 1130 with a core storage capacity of
16K with threg disk drives. The basic program used to simulate the
system was the Continuous System Modeling Program for the IBM 1130
computer. The program was modified by the addition of several
subroutines for the purposes of storing signals, calculating the
Fourier transform, modifying the time-variations, and printing
results. The primary disadvantage to this approach is that it
requires a good deal more time to make a calculation than with the
hybrid computer. To illustrate the difference in run time, assume

it is necessary to calculate the Fourier transform at five fre-
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quencies for a signal of ten seconds duration. On a hybrid computer
with the Fourier transform.calculated on the analog portion of the
computer, one run would require ten seconds of coﬁputation time with
five runs being required. Add approximately 30 seconds additional
time to allow for data reading and parameter changing and thé total
time becomes 80 seconds. 'The digital computer requires from two to
four minutes to generate the required signals of a third or fourth
order system plus approximately 36 seconds to calcuiate the Fourier
transform at each frequency for a total run time of approximately
five minutes. This time increases sﬁbstantially as the order of the
system increases. The primary advantage in using the digital
simulation is the increase in accufacy that is obtainéble. However,
one also gains other advantages. Time-variations are easily
simulated and modifiéd on the digital computer so that it is
possible to develop search»techniques for determining the worst case
variations which is required in the first design procedure and for
generating randomly varying varliations which is required in the
second design procedure. Thus, once the program is starteé the

operator need do nothing more until a solution is obtained.

4.3 Specification

As was discussed in Chapter One, system specifications are
more commonly given in the time domain than in thé freqpency doméin;
thus, there is no reservoir of experience upon which to draw in
assigning frequency domain specifications as there is for time
domain specifiéations. In order to determine realistic frequency
domain specifications for the example considered in this chépter, it

will be necessary to first consider the acceptable system step
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response in the time domain and then attempt to relate these to the
frequency domain. The approach will not be rigorous but will
consist of examining the magnitude of the Fourier transform of a
sampling of error functions and assigning a ffequency domain
specification based upon this examination.

Consider the first form of frequency domain specification

which is given by

lcGw) - ¢oGw)| = |EGe) | < Mw) (4-1) .

where G is the desired step response, C is the actual step
response, and M is a real number which can depend upon y . The form
of this specification naturally suggests a time domain specificétion

of the form

le(t) - co®)] = e(®)] < m(r).

There are two graphical interpretations of this relation. The

specification given by

le(t) - co(t)| < m(t) (4-2)

corresponds to a symmetrical envelope about the desired step
response within which the actual step response must fall. Such a

specification is shown in Figure 4.4,
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t

Figure 4.4
Time Domain Specifications as Envelope
About Desired Step Response

The specification can also be expressed in the form

[e(t)] < m(t) (4-3)

which corresponds to a symmetrical envelope about the time-axis as

shown in Figure 4.5.

A e(t)

Figure 4.5
Time Domain Specifications as Upper
Bound on Error
In this form the specification represents an upper bound on the
error. Although the specifications given in inequalities (4-2) and

(4-3) are equivalent, the specification as given in inequality (4-3)

is somewhat more convenient to study since it is independent of the
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desired step response. In all probability, however, the specifica-
tion for any particular system will first be established in the form
of inequality (4-2) since one is generally more familiar with
acceptable step responses than with acceptable error functions.

For the example considered in this chapter, it will be assumed
that the desired system transfer function is given by

4
s% + 2.8 + &4

T(s) =

This transfer function will occur in the system of the example if

the gain is constant at 4 and the compensations are given by

_ _s + 2
H(s) = G(s) = ‘——_+'_—2—.—8—

The transfer function corresponds to a second order system having a
~ damping ratio of 0.7 and an undamped natural frequency of 2. The
step response of this transfer function, which is the desired step
response, is shown in Figure 4.6,

In assigning the specification envelope, consideration must be
given to the usual time domain specifications of rise time, over-
shoot and settling time. The rise time determines how quickly the
lower bound of the envelope must increase while the peak overshoot

determines the maximum values of the envelope's upper bound and the
settling time determines how quickly the envelope must converge to
the final value. In the final analysis, however, it will be neces-
sary to assign an acceptable minimum step response and an acceptable
maximum step response. These maximum and minimum step responses will
constitute the specification envelope. Note that the time domain
specification given in inequality (4-2) demands that the envelope be
symmetrical about the desired step response. If the maximum and
minimum step responses are not symmetrical about the desired step

response, the desired step response must be redefined such that this
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symmetry is achieved. The assumed specification envelope for the
example is shown in Figure 4.6 with the desired step respomse.
This envelope corresponds to a minimum rise time of approximately
1.5 seconds, a peak overshoot of 307% and a maximum settling time
of 8.5 seconds.

The upper bound on the error which corresponds to the specifi-
cation in Figure.4.6 is shown in Figure 4.7. The problem now is to
determine the frequency domain equivalent of this specification in
the form of an ﬁpper Bound on the magnitude of the Fourier trans-

form of the error. This frequency domain specification will be in

a form as shown in Figure 4.8.

A M(w)

—

) ) W
Figure 4.8

Form of Frequency Domain Specification

The desired objective is to determine the frequency domain envelope
M(w) such that if the magnitude of the Fourier transform of the
erfor is less than or equal to the maximum value M(w), the error
will fall within the time domain envelope given in Figure 4.7.

A difficulty is now encountered which again emphasizes the
complexity of the problem of obtaining frequency domain specifica-
tions from time domain specifications and vice-versa. Assume that
an error e(t)_satisfies the time domain specification of Figure 4.7
and the magnitude of the Fourier transform IE(jw)Isatisfies the
frequency domain specification of Figure 4.8. Let the error e(t)

be shifted in time by the amount T such that e(t - T) now lies
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outside the time domain specification. The Fourier transform of
e(t-1) is E(jw)e~JYT which has the>same magnitude as the Fourier
transform of e(t) and thus will still satisfy the frequency domain
specification. The reason for this difficulty is due to the fact
that e(t-t) is nonminimum phase so that the uniqueness between
phase and magnitude does not hold. Thus there is no unique rela-
tionship between the error e(t) and the magnitude of its Fourier
transform. It is easiiy seen then that if the frequency domain
specification is given in the form shown in Figure 4.8 and-the time
domain specification is given in the form shown in Figure 4.7, there
will always be functions which will satisfy the frequency domain
specifications and yet violate the time domain specifications.

In stabie systems it is generally the case that the maximum
error wiil occur relatively close to the origin, then will settle
to zero. Otherwise, the actual step response would closely follow
the desired step response through its maximum change; then, after
attaining the final value would show a deviation. It would be
necessary for a system to possess some form of large time delay to
exhibit such behavior. Since there is a large class of systems
which do not possess such time delays and therefore will not
exhibit a delayed error, it will still be assuméd that the time
domain specification is given in the form of Figure 4.7.

A number of possible error functions and their Fouéier trans-
form magnitudes will now be examined in order to determine the
error function characteristics in the frequency domain.

Figure 4.9a shows four functions which, for different values

of time, lie on but do not exceed the error bound m(t). Figure 4.9b
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shows a plot of the>magnitudé of their Fourier transforms. Also
shown for comparison is the magnitude of the Fourier transform of
tﬁe time domain envelope m(t). Aq error function that is exactly
equal to m(t) has the largest zero frequency componeﬁt ailowable
since this component is equal to the area under the curve. But
since m(t) has few variatioms, its higher frequency component would
be smaller than might be allbwed.: Functions 2 and 3 shown in
Figure 4.9a cross the zero axis leaving about as much negative area
as positive area and thus would be egpected to have a relatively
small low frequency component. Note that the type qf variation for
all four functions is similar so they would be expected to have
similar higher frequency components. This is shown in Figure 4.9b
wheré all four functions exhibit peaking arpund w=1.5, tHen
decrease.rather quickly toward zeré. Function 2 exhibits the
greatest amount of variations in the time domain which sﬁows dp in
the frequency domain as a little larger highAfrequency component
thgn is observed in the other three functions.

Figure 4.10a shows.a series of error functions which haé a
relatively large Variation‘then settles fairly quickly to zero.
The frequency doﬁain representations are shown in Figﬁre 4.10b. As
expected, all exhibit arrelatively small zero frequency component
since the areas under the curves are relatively small. The higher
frequency componenté depend upon the particular variatibns. If the
variations show an oscillation effect as does Function 5, the higher
frequency components will be larger; whereas, if the error deviates
from zefo only once then returns to zero as does Function 6, the

higher frequency component will be smaller.
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Shown in Figure 4.lla is a series of functions having relative-
ly low frequency oscillatory tendencies but remaining within the
time domain error bounds. The magnitudes of their Fourier trans-
forms are shown in Figure 4.11b. The oscillatory tendency is
evident in large frequency components in the region of w equal froﬁ
2 to 3. Note that Function 10 is smaller than the other three, and
thus its Fourier transform is also smaller in magnitude.

Figure 4.12a shows two functions which fall within the time
domain error bound but are highly oscillatory. The magnitudes of
their Fourier transforms are shown in Figure 4.12b. As expected,
the oscillations show up as larg; high frequency components.

It would also be of interest to observe the effects in the
frequency domain of a single fast variation. Figure 4.13a shows
such a function with its frequency domain representation shown in
Figure 4.13b.

Although the error functions shown in Figures 4.9 through 4.13
represent a small sample:of the possible error functions, they were
selected from the functions iﬁvestigated because they give a good
representation of the error functions possessing Fourier transforms
with large magnitudes which are the types of functions that will
establish the error bound in the frequency domain. The low fre-
quency bound, that is, in the region from O to 1 radian per second,
will be established by the Fourier transform of m(t) which is shown
in Figure 4.9b. This is because as was previously mentioned m(t)
has the largest low frequency component allowable. To establish the

high frequency bound, it is observed that the magnitude of the
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functions shown is less than .03 for w greater than seven radians |
per second unless the functions are highly oscillatory as shown in
Figure 4.10a. Such oscillatory functions are generally undesirable
even though they do not exceed the time domain error bound, and
thus the high frequency bound should be set small enough to exclude
these undesirable functions. Nevertheless, a high frequency
oscillation of small magnitude is often considered acceptable; thus,
instead of assigning-a very smali value for high frequencies, a
relatively large value will be selected for the high frequency
bound. The minimum value of the fréquency domain bound at high
frequencies will be selected as 0.05.

The frequency domain specification must now be established in
the mid-frequency range. A minimum frequency domain envelope would
be established by the magnitude of the'Fourier transform of the time
domain envelope m(t) which is shown in Figure 4.14, Also shown in
Figure 4.l4 are additional envelopes, the inclusion of which will
allow additional types bfrfunctions. The envelope labeled A will
allow Function 7 of Figures 4.10 and the Function shown in Figures
4.13. Note the similarity of these two functions. The envelope
labeled B wiil allow the functions shown in Figures 4.9 and the
functions shown in Figures 4.10 with the exception of Function 5.
Observe that the large oscillatory nature of Function 5 excludes it
from this set. The envelope labeled C allows all funetions shown in
Figures 4.10 and 4.11. The envelope labeled D is included in
Figure 4.14 to demonstrate the large magnitude required in the

region of w equal to five to six to include the highly oscillatory



122
functions shown in Figures 4.12. The error functions allowed by
the envelope labeled B will be assumed to be acceptable in the
example; thus, the magnitude labeled B will be selected as the
frequency domain specifications; This selection will exclude the
oscillatory type of functions shown in Figures 4,11 and 4.12 but
will inciude functions having a high degree of variationms.

As was discussed earlier; it is possible for the frequency
domain specifications to be satisfied and the time domain specifi-
cations to be violated. With this in mind, it would be of interest
to examine the magnitudes of the Fourier traﬁsfofm of a sampling of
functions which violate the time domain specification but may be
expected to satisfy the frequency domain specifications. Such
functions could not have large oscillations for they would surely
violate the frequency domain specification at high frequency, nor
could such functions have large deviation without being oscillatory
for they would then violate the low frequency specifications. One
possible type of functioh that may violate the time domain specifi-
cation but satisfy the frequency domain specification would increase
slowly to a va;ue outside the time domain specification then return
to zero before the frequency domain specifications are violated at
low frequency. Three possible functions are shown in Figure 4.15a
with their Fourier transform magnitudes shown in Figure 4.15b. Even
though functions 15 and 16 violate the time domain specification
only a relatively small amount, the frequency domain specifications
are nonetheless violated at low frequency. Function 17, on the
other hand, does not violate the frequency domain specifications

while the time domain specifications are violated. This, of course,
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is because the magnitude of function 17 does not become large

enough to have too large an area under the curve but does not

return to zero quickly enough to avoid‘violating the time domain
specifications. Functions such as function 17 cannot be eliminated
by altering the frequency domain specifications withouf also
excluding the desirable functions. However, the slowly settling
component in such functions is probably due to poles near the
origin as would occur if L(jw) (seé Figure 4.3) were assigned a

zero near the origin and the magnitude of L(jw) were not sufficient-
ly large in the low frequency range. 'If functions of this type
occur, the cause will probably be evident and can thus be eliminated
from the design.

Another type of function which could possibly violate the time
domain specification but not the frequency domain specification
would quickly reach a point outside the time domain specification
then return to zero to avoid violating the frequency domain specifi-
cation at low frequency. :Two such functions are shown in Figure
4 16a with their Fourier transform magnitudes shown in Figure 4 16b.
Even though function 18 violates the time domain specifications, it
would in fact satisfy these specifications if it were shifted
properly in time. Function 18 violates the frequency domain
specification only slightly at w equal to five radians per second
while function 19 completely satisfies the frequency domain
specification. Note that the magnitude of the Fourier transform of
both functions remains relatively large at frequencies around six

to nine radians per second. This is undoubtedly due to the fast
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rate of variatiohs of the functions. It is likely that such
functions can be controlled by reducing the high frequency specifi-
cation. A reduction at high frequency will not be made on the
frequency domain specification which has been chosen, but careful
attention will be paid as to whether or not such error functions
become present in’ the design of the example.

To summarize, the frequenéy domain specification which is
shown in Figure 4.17 has been chosen as a counterpart to the time
domain specification shown in Figure 4.7. The selection was based
on a small but what is felt to be a representative sampling of error
functions. It was also pointed out that an error function satisfy-
ing thé frequency domain specification will not necessarily satisfy
time domain épecifications as shown in Figure 4.15; however, such
instanceé would have to be due to some form of time delay within the
system or a slowly éettling component within the system. In such
instances the particular:portion of the system which is causing the
difficulty would have to be examiﬁed separately to see if it can be
eliminated or its effect reduced to an acceptable level.

The frequency domain épecificatiéns used in the second design
procedure must now be determined. These specifications have been

assumed to be given in the form

ki) < [C(Hw)_

< ko (w)
Co(iw) -

(4-4)

8y (w) < Arg [ccjw) } < 8, (w)
- €, Guw) '
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In order to compare the two design procedures, it will be desirable
to have the specifications as given in Inequality (4-4) to be
equivalent to the specifications shown in Figure 4.17. Such an
equivalence is easily established if the two sets:of specifications
are properly interpreted. Note that the specifications given in
Inequality (4-4) define a region in the complex plane which is

illustrated in Figure 4.18.

Am '
CREDINCY

Re

Figure 4.18
Region Defined by Second Form of
Frequency Domain Specifications
Also observe that the specification given in Figure 4.17 defines a

reglion in the complex plane.‘ This region is shown in Figure 4.19.
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_ M(w)

Co (3w)

Re

Figure 4.19
Region Defined by First Form of
Frequency Domain Specifications

It is evident that since the regions shown in Figure 4.18 and 4.19
are basically different, one region can only be an approximation to
the other. Howevér, the procedure for using the specification given
in Inequality (4-4) is a graphical procedure and the region shown in
Figure 4.19 can be used as satisfactorily as the region shown in
Figure 4.18. Thus, the specifications used in the second design
procedure will be the regions defined by the frequency domain
specificationlgiven in Figure 4.17 and illustrated in Figure 4.19 in

place of the region shown in Figure 4.18.

4.4 First Design

'

In design procedures number one and two, the first design is a
starting point from which a final design is reached. In the

previous chapter the methods of obtaining a first design assumed

that the time variations were known as an explicit function in order

that the necessary integrals could be evaluated. In the example
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given in this chapter the‘time variations are not assumed known as
an explicit function, so that some other method of determining the
first design must be used rather than that previously given. It
would be possible to assume any stable compensation as the starting
design; however, not only may this lead to an excessive number of
designs in the procedure, but such an iﬁdiscriminate approach does
not lend itself to an orderly‘study of time-varying systems. The
most logical starting design wouid be one based on a time-invariant
system with plant ignorance. Since the plant is time-invariant,
such a design can be made analyticaily; and, in addition, the
effects of the time variations on the system can be directly
obsefved while the additional feedback fequired to compensate for
these time variations is clearly evident.

The first step in the time invariant design is to find the
acceptable regions in the complex plane for H(jw). However,
instead of determining the acceptable regioné of H(jw) what will
actually be found are t};e acceptable regions for |
—Lo(jw) = ~H(jw)Pg(jw) where Po(jw)‘is the nominal plant. - In
designing the‘time invariant system one should bear in mind that
the design equations for both design procedure one and two stem
from the same basic equation. The difference in the two procedures
is that proéedure one bases the design upon the difference in the
actual system output and the desired system output, while procedure
two bases the design upon the ratio of the actual system output to
the desired system output. Since the specifications found in the

previous section for the two procedures are exactly equivalent,
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the acceptable regions for -Ly(jw) found by either procedure one
or two will be identical.‘ For illustration purposes the acceptable
regions will be found using both procedure one and two.

The acceptable regions for -Lo(jw) will first be obtained for
design procedure one. The design equation for design procedure

one is given as

E(jw) = 1 J*AP‘1<jw,jy>c(jv>dy.

Py (jw) + H(jw)

-00

Since the system is assumed time invariant, the design equation can

be written

p(w) = —LElGw) - etaw ] g Gw + BGw] .

B, (0 + H(jo)

Solving for E(jw)'and rearranging one can obtain

1.1
Pa(jw)  P(jw)
1

(4-5)

E(jw) = Co(jw) .

PGy + H(w)
In selecting the nominal plant, observe that IE(jw[ may be reduced
by elther increasing the magnitude of the denominator of Equation
(4-5) or by degreasing the magnitude of its numerator. It is the
design objective, of course, to increase the magnitu&e of the
denominator no more than necessary while maintaining as small a
value of |H(jw)| as possible. Thus, P (jw) should be delected such
that the magnitude of the numerator will be reduced to as small a

value as possible. The inverse plant is given by
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1 Jwlgw + 2)
P(jw) = k

where 1 <k <10

and the inverse nominal plant is given by

1 o (e +2) .
Po(jw) ’ ko

The expression for the magnitude of the numerator of Equation (4-5)

becomes

1 1 jw(jw + 2) jw(in * 2) |
Po(Juw) ~ P(jw) = ko = k
1 1
JE-t] s

For any w the maximum value of this expression will be minimized

for all k when 1/y, is given by

1 1. 1
== kmin + kmax = 1.1 - 0.55
Xo 2 2

or ko = 1.818,
Thus, the nominal plant is selected as

‘ 1.818 .
Po (Jw) = Fu(Gw + 2)

The regions of acceptable -Ly(jw) can now be found. Rearrang-

ing Equation (4-5) as shown on the following page
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) Po(jw)
B9 = g Col1u)
f"—(j_ﬁ)— -1+ 1+ HGEWP,(jw
one can write
E(j6) = U (4-6)

Q(jw) + Lo(jw) °
where
Py (jw)
Qv = F gu) - 1
and

Lo(ju) = H(JW)P,(jw) + 1 = Lo(ju) + 1.

Applying the specifications to Equation (4-6), one obtains the

inequality
| aG3w) | B
o || 3w + Togm | €0
or
| QW) + ToGw | > 1 QG0 | coGw | (4-7)

M(w)

At any specific frequency @ the function Q(jw) takes on a range of
possible values in the complex plane depending upon the plant P(jw).
For each value of Q(jw) the right hand term of Inequality (4-7)

takes on a specific value which then specifies a forbidden region
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for -L,(jw). Determining the forbidden regions for all values of
Q(jw) then determines the forbidden region of —io(jw) at frequenéy
w. The compliment of the forbidden region automatically gives the
acceptable region of —io(jw). To illustrate the procedure, the
acceptable region for —io(jw) at » equal to two will be found.
The.range of Q(jé) must first be determined. The expression for
Q(jw) is given by _

QGiw)= FoGw)

P (juw)
= 1.818 e +2) _
jow(iw + 2) k
= 1,818
k 1.

Since the cdnstant k takeé on all values between one and ten,
Q(jw) tékes on all real values between -0.818 and 0.818. From
Figure 4.17 the value of M(2) is found to be 0.4 and the value of
|Co(j2)[ is calculated as 0.352. Table 4-1 gives the values of
~the right side of Inequality (4-7) for different values of Q(jw)

at w equal to 2,

lQ3w) |. e (Gw) |

¢ M(w)
-0.818 0.731
-0.5 0.446
-0.2 0.179
0 0

0.2 0.179

0.5 0.446

0.818 0.731
Table 4-1

Values of the Right Side of Inequality (4-7)
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To determine the forbidden region of —io(jw) for a particular Q,
consider the value of Q equal to -0.818. At this value of Q one
finds from Table 4-1 that the magnitude of Q(jw) + ﬂo(jw) must be
greater than or equal to 0.731. The region where this is true is
illustrated graphically in Figure 4.20. The distance from Q to
—ﬂo is the magnitude of Q + fo, so that the forbidden region of
—fo for Q equal to -0.818 corresponds to the region inside a

circle with center at -0.818 and radius 0.731.

A Im
Q + L

A

™ Locus of Points
Corresponding to
IQ + Lol Constant

Figure 4,20

Illustration Showing the Determination of
Acceptable Region of -L,(jw)

Repeating this procedure for several values of Q, one is able to
determine the forbidden regions corresponding to each value which,

when superimposed upon one another, gives the total forbidden
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region. The acceptable region is then the region outside the
forbidden region. Figure 4.21 shows the total acceptable region

of "io for w equal to 2.

4 Im

Forbidden-
Regions

Figure 4.21
Acceptable Region of -L, for w =2 .

Having the acceptable regions of —ﬂo, it is a simple matter to

determine the acceptable region of -Ly. Since ﬁo is given by

~

Lo

1+ Lo,

then

Thus by adding one to each point in the acceptable region of —ﬁo,
the acceptable region of -Lo is obtained. This corresponds to a
shifting of the acceptable regions of -Lo, to the right by one to

obtain the acceptable regions of -Lg.
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The frequencies of interest for which the acceptable regions
are to be found for the example must now be selected. In calcu-
lating the Fourier transform on the computer, the frequencies
which may be calculated are multiples of the fundamental frequency

given by

w = 27
T

where T is the totai system time of the calculation. It will be
assumed that the system will be close to steady state in ten
seconds so that T is taken as ten seconds. If, in practice the
system does not reach steady state in ten seconds, T can be
doubled or quadrupled until steady state is reached and the
approp;iate harmonic selected. With T equai to ten seconds, w,
is equal to 0.628. The multiples of this frequency which were
chosen are 0, 1, 2, 3, 7, 10 and 15. This selection gives fre-
quencies fairly equally spaced on a Bode plot and should also

give adequate‘representation'of the functions of interest. The
frequencies correspondiné to these multiples are 0, 0.628, 1.25,
1.88, 4.39, 6.28, and 9.42, The acceptable regions of Lo (jw)
which correspond to these frequencies are shown in Figure 4.22.

An acceptable region for ®w = 0 cannot be found since Lo(jw) is
indeterminate at w = 0, If it is found that the error is too
large at w = 0, a correction will be made in the second design.
The reduction of the magnitude of Ly(jw) is not as critical at low
frequencies as it is at high frequencies since at low frequencies
the loop gain is adequate to limit the noise transmission to the

plant input.
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The acceptable regions for ~Ly(jw) will now be found for

design procedure two. The design equation for design procedure

two is given by
C(jw) _ 1 + Lo(jw

Co (Fw) - Po (jw) .
P(30) + Lo(jw)

The nominal plant is chosen the same as was selected for design

procedure one.

P, (jw) = 1.818
° ju(je + 2)

Since the system is assumed to be time-invariant, the equivalent

plant is given by

P ('w = k
eq 3% ju(jo + 2)
where
1 <k < 10.

The ratio of the nominal plant to the equivalent plant is thus

found to be
1.818
Po(jw) = Jw(jw + 2) = 1,818
Peq (30 k k

Jw(jw + 2)
so that the design equation becomes

C (Gu) 1+ Ly(ju) . -8)

Co(jw) ~ 1.818 .
039 ~ * Lo(iw
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The objective is to chose an Ly(j®) such that the value of
C(jw)/Cy(jw) as given by Equation (4-8) falls within the
appropriate specification regions for all values of k.(28)

As discussed in the previous section, one form of the
specification region is a circle in the complex plane of radius
M(W) and centered.at the point Co(jw). The specifications ﬁill
be satisfied if (C(jW) falls within this region. Dividing every
point in the region by Co(jw),.oné obtains a region into which

C(jw) /Co(jw) must fall for the specification to be satisfied.

This region consists of a circle centered at the point one with

radius M(w)/[Co(jw) . As with design procedure one,_the frequen-
cies of interest are selected as 0, 0.628, 1.25, 1.88; 4,39, 6.28,
and 9.42. The regions of acceptable C(jW)/Co(jw) for tHese
frequencies are shown in Figure 4.23.

The regions shown in Figure 4.23 are still not in the most
convenient form for determining the acceptable region of -Lo(j®),
however. To determine tﬁe appropriate form, consider Figure 4.24.
as shown on page 1l44.

Shown in Figure 4.24 is a hypothetical region of P,/Peq and
a line % passing through the point one. To determine whethef or
not any point A én the line ¢ lies within the acceptable region of
-Lo, one draws the vector from point A to one which is equal to |
1+ Ly, A vector from A to any point within the regions of'Po/Peq
gives PO/Peq + Lo. These two vectors give the numerator and

denominator of Equation (4-8) so that C/Cy can be determined. If

C/Co as determined by Equation (4-8) falls within the acceptable



143

(

q

)

()% /(mf)n 30 suor8ay o1qe3idedoy
€¢°y @an31y

S9TO3T) OpPISuUl
917 suotr8oy arqeadsooy

(®)




144

A I
Im .
/
A
_LO
P
—-—-P;—Qh+ L,
1+ Lg eq
I'1 Re
/ . .
/ Region of Py/Peq
/

Figure 4.24
Determining a Point on the Boundary of the
Acceptable Region for -L,(jw)

region of C/C, for all the points within the region of Po/Peq,
point A then falls within the acceptable region of -Ly. Point A
lies on the boundary of.the acceptable region of -L, if C/CO just
falls within the acceptable region of C/Co for all Po/Peq' The
object is to determine the boundary points for a number of lines
passing through the point one. These boundary points then
determine the region of acceptable -L,.

The determination of the boundary points by the procedure
just described is a trial and error methbd and can become fairly
lengthy. However, if the specification region for C/Cy were
modified so that the numerator appears to be a constant and the

denominator a variable, which corresponds to the form of Equation

(4-8), the determination of the boundary of acceptable -L, becomes
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a simpler matter. To illustrate, Figure 4.25 shows the region

of Po/Peq, and superimposed is an assumed modified region of C/C,.

A Im | !

Modified Region
of PO/Peq

€q

Figure 4.25
Tllustration of the Use of the Modified
Region of C/Cq,

The point one is common to both regions and the vector from
point A to one which is 1 + L, also corresponds to C. Observe
that if point A is moved away from one along line %, the region

of C/Cy, becomes proportionally larger while retaining the same
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Figure 4.27a
Modified Region of C(jw)/Co(jw): w = 0.628

Forbidden
Region
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Figure 4.27b
Modified Region of C(jw) /Co(jw): w = 1.25
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*Im

Forbildden Acceptable
Regipn Region
+ P
0 1 Re

Figure 4.27c
Modified Region of C(jw)/Cy(jw): w = 1.88
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Figure 4.27d
Modified Region of C(jw)/Cy(jw): w = 4.39
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Figure 4.27e
Modified Region of C(jw)/Co(jw): w = 6.28
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Acceptable
Region
I A
\\o
Forbidden
Region

Figure 4.27f
Modified Region of C(jw)/Co(jw): w = 9.42
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\
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\
\P- d ;
« Point on Boundary j
\ of -L
\ o
\
11 \
5\ Boundary of Modified Region
of C/C, at Increased Size
Region of
P, (ju) /Pgq(Guw)
/
—
L
/
/
/
/
/
-1

Modified Region
of C(jw)/Cq(jw)

Figure 4.28
Determination of a Point on the Boundary
of the Region of Acceptable -Ly(jw): w = 1.25



155
of acceptable -Lo(j®W). The acceptable regions of -Lo(jw)
obtained by this method are identical to the regions obtained for
design procedure one which are shown in Figure 4.22. Figures 4.27a
through 4.27f show the modified regions which correspond to the
specification regions given in Figure 4.23.

Since the acceptable regions of ~Ly(jw) are known, a suitable
Lo(jw) can now be designed for the time-in;ariant system. It is
desired to have ~L,(jw) just 1ievon the boundaries of acceptable
-L, at the point where the distance to the origin is a minimum.

For the acceptable regions shown in-Figure 4.22, the points closest
to the origin lie on the negative real axis. However, for the
magnitude of L,(j%) to decrease there must be some degree of lag
associated with Lo(jw). Thus, the design of L, will be a
compromise between maintaining as small a magnitude as possible
while obtaining the necessary rate of decrease. The design of
Lo(jw) was made by trial and error. A preliminary design was
first made using the Bode plot, then the final design was reached
by adjusting the preliminary design so that the polar plot of
-L,(jw) came as close as possible to lying on the boundaries of
the acceptablé regions of -L,(jw). The expression for the L,(s)

which was selected is

Lo(s) = 24.17 (s + 0.9) (s + 6)
° s(s +1.4) (s+7) (s + 12)

and has a polar plot as shown in Figure 4.29. The expression of

H(s) is easily found from the relation
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Im

Figure 4.29
Polar Plot of Time Invariant Design
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Lo (s)
H(s) = §;?E3

and is found to be

H(s) = 13.3 S+ 8.9s2+ 19.2s + 10.8
s® + 20.452 + 110.6s + 117.6

Generally, the numbgr of poles over zeroes will be greater than in
the above Lp(s) and H(s). The high frequency poles were not
included in order to keep the solution time for the computer
simulations as short as possible. The high frequency poles will
be added after a suitable time-varying design has been made.

The prefilter G(s) is determined from the expression

G(s) = 1+ Lo(s) Ty ()
Po(s)

Making the appropriate substitutions one obtains

G(s) _ 2.2 .8° + 22.4s" + 175.6s% + 553,982 + 699.3s + 261.1
s + 23.2s% + 171.7s3 + 508.9s2 + 771.7s + 470.4

Note that thé far off poles of L,(s) will also be in G(s); however,
the far off poles in G(s) are not necessary as they are in L(s).
In fact, the far off poles of G(s) can be assumed to be in Ty(s).
This will give a simplier expression.for G(s) and will result in
little change in the system response.

Toﬁaetermine whether or not the design is adequate for the

system under time-varying conditions, a simulation was made on an
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IBM 1130 digital computer using the Continuous System Modeling
Program for the 1130 in conjunction with the algorithm for
caléulating the numerical Fourier transform as given in Reference
(48). A more detailed discussion of the simulation procedure is
given in Appendix D. |

The results of the search for the maximum value of the error
will first be presented. A series of runs was made with the
function representing the time—vérying gain having the general
form as shown in Figure 4.30. The function has 11 equally spaced
points starting from time equal zerd to nine seconds. The points
can take on any value between omne and ten with the function
varying linearly between points. Thus, the maximum slope for the

function is ten except at the selected points.

Figure 4.30
Type of Function for Time-Varying Gain

In searching for the function which would give the maximum error,

it was quickly found that the larger errors occur when the
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specified points take on either maximum or minimum values. The
variations having the greatest effect on the error occur near time
equal zero, and any variation after five or six seconds has little
effect on the error. By far the largest error occurs when the
time variations start at ten and decrease quickly to one. In
fact, variations starting at values other than near ten produce
errors no larger than those observed when the gain is held
constant at ten, no matter what the subsequent variation.

It was found that a significant_increase in error occurred’
only at frequencies zero and 0.628, while the design appeared to
be adequate for all higher frequencies. Figures 4.32 and 4.33
show the step responses and error functions corresponding to
these maximum errors. Figure 4.37 shows the magnitude of the
Fourier.transform of these error functions. Note that the error
functions in both cases increase quickly, then slowly decrease to
the final value with th¢ result of an excess area under the curve.
What apparently happens in the system during these partiéular
time-variations is that when the gain starts at ten, the system
has the ability to accelerate quickly to a relatively high
velocity; however, after the system has attained the velocity the
gain is suddenly reduced to one, so that the rapid acceleration
effect is lost, thus allowing the system to coast to a higher
value than would be the case if the gain remained at tén. With
the gain at the lower value, the system returns to the final
value more slowly than if the gain were at ten. The effect is

also observed in Figure 4.33 when the system decreases to zero
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more quickly after four seconds as a result of an increase in
gain between four and five seconds.

In an effort to observe the effect of an increase in slope on
the error, a second series of time-varying runs was made with the
same time-varying gain as shown in Figure 4.30, except the
variations are completed in 4.5 seconds instead of nine seconds,
thus incfeasing the maximum gain from ten to 20. A slight increase
in the error at the two frequencies zero and 0,628 was observed;
but, again, the design proved to be adequate for the higher
frequencies. Figure 4.34 shows the>variations causing the maximum
error at the two frequencies and Figures 4.35 and 4.36 show the
corresponding step responses and error functions. The magnitude
of the Fourier transforms of the error functions is shown in
Figure 4.37. Note the close similarity of these functions to
those shown in Figure 4.31 through 4.33,

A final effort was made to cause errors at the higher fre-
quencies by having the Eime—varying gain make discrete jumps
between the values at each of the 11 points instead of varying
linearly between points. Only negligibly higher values of error
were observed, however, ove% those obtained in the second series
of rums.

It is felt that an excellent representation of possible time-
variations were obtained in these runs. A number of preliminary
runs were first made and analyzed to determine the types of
variations causing the larger errors. It was these preliminary

runs that showed the larger errors to occur when the specified
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Specification

Maximum Error of Second
Series of Time Variations

Maximum Error of First Series
of Time Variations

5+
Largest
Time-invariant
Error
0 1 2 3 4 5 w

Figure 4.37
Maximum Error Due to Time Variations
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points of the function take on either the maximum or minimum
values and that the largest errors occur when the function started
at ten and quickly decreased to one. Special functions such as
oscillations of various frequencies and step functions were then
selected and run. Finally, a large number of functions were
selected at random to help insure that some possible variation
resulting in larger errors had not been overlooked. None of the
errors due to fhese special or fandom selections, however, caused
errors larger than those observed in the prelimiﬁary runs, In
all, more than five hundred functioﬁs were run requiring approxi-
mately 70 hours of computer time on the IBM 1130.

The determination of the regions of Py/Pgq for w = 6.28 will
now be discussed. In reality, the determination of the regions
of PO/Peq were carried out simultaneously with the search for the
maximum I E I since both PO/Peq and I E I were calculated for
each function. bThe procedure for determining the region of
Po/Peq was to plot tﬁe:values of PO/Peq for each time-varying
function from which the general outline of the region could be
observed. It must be recégnized that the procedure is not exact
but, nonetheless, yields useable results. Because of the rela-
tively large number and Qide diversity of functions which were
run, it is felt that a reasonébly good representation of the
regions of Po/Peq was obtained. The regions are shown in Figures
4.38 through 4.43, along with the specification regions of
acceptable PO/Peq for Fhe Ly of the design. The only frequency
at which the specifications are not met is 0.628, which is in

agreement with the results obtained in the maximum |E|
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Figure 4,41
Region of Po/Peq~for w = 4.39
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Figure 4,42

Region of PO/Peq for w = 6.28
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Figure 4,43

Region of PO/Peq for w = 9.42



175

determination.

The regions of Po/Peq for frequencies 0.628, 1,25, 1.88, and
9.43 are well concentrated about the region of PO/Peq corresponding
to the time-invariant caée. This concentration is similar to the
observations made in the previous chapter and is no surprise;
however, the regions of PO/Peq for frequencies 4.39 and 6.28 do
not show this concentration which was an unexpected result.

The region of Po/Peq for 6.28 is especially interesting since
it extends into the left half of the complex plane and a good
distance into the lower half plane.‘ In fact, points were found
as low as -j6. However, such large magnitudes‘of PO/Peq are not
unacceptable as is seen in Figure 4.42. Note what large values of
PO/Peq imply about the system output C(jw). Since P, is a constant,
PO/Peq becomes large only if Peq becomes small. Since Peq is
defined as the plant output divided by the plant input, Peq becomes
small only if the time-varying plant does not effectively transfer
the signal at the frequéncy of inﬁerest. In other words, PO/Peq
will be large if the frequency content of the output is small
while that of_the input is not so small. 1In the example the
frequency content of the output at 6.28 cannot only be small or
even zero, but can actually be at some finite magnitude 1800 out
of phase with the desired plant output, thus allowing portions of
PO/Peq to lie in the left half plane.

Figures 4.38 through 4.43 clearly illustrate why the design
is satisfactory for the time-varying gain at frequencies of 1.25

and above. The time-variations do have a significant effect on
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the system as shown by the increased size of the region of Po/Peq.
However, when the specification region of acceptable Po/Peq is
made large enough to enclose the region of PO/Peq for the time~
iﬁvariant system, it also encloses a great deal of additional
area which is large enough to allow for the increased size of the
region of PO/Peq.in the time-varying system. That is, the design
is not only acceptable for the range of PO/Peq in the time
invariant system, but it is also.large enough to accept the much
larger region of PO/Peq in the time-varying system. It is
speculated that if the region of PO/Peq for the time-invariant
system came closer to filling the specification region of Po/Peq
such as would occur if a plant pole could take on a range of
values, the region of PO/Peq for the time-varying system would
not be able to lie entirely within the acceptable region of PO/Peq.

Tt is also of interest to observe some of the step responses |

and error functions of the system for time-variations other than

those resulting in the ﬁaximum value of |E . Seven typical step
responses with their corresponding time-variations and error
functions are shown in Figures 4.44 through 4.50. The time
duration of the randomly selected error functions was plaéed at
seven seconds since, as has been previously observed, faster

time variations and variations after seven seconds have little
effect on the error. The step responses are weli behaved despite
the time-varying gain. The maximum overshoot appears to be not

over 30% and the settling time of the function is not over seven

or eight seconds in the worst case. Although fast rise time is
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usually not considered an undesirable property, it is fast rise
time that is responsible for the large values of the error func-
tions shown in Figures 4.44, 4;46; and 4.49. The time-varying
gain in the responses having large values of error start at or
near ten, while functions starting at or near one such as shown in
Figures 4.45, 4.48, and 4.50 result in step responses havipg
little or nolovershoot with a relatively slow rise time and thus
smaller values of error. It is'evident from these figures that
the form of the step response and thus the error function is
highly dependent upon the starting &alue of the time-~varying gain
and is less sensitive to subsequent variations. .This basically
is the same observation made earlier in the determination of the
maximum value of IEI.

Since the time—invariant system design is unsatisfactory for.
the system under time-varying conditions; a secénd design must be
made. The second design will first be made using design procedure

one.

4,5 Second Design: Procedure One '

Equations (3-28) are.the design equations for the subsequent
designs required in procedure one. The design equations can be
written as ’

Eom | I % 5 -
— |1+, |2 ]1+1 | for Egm 2 M - (4-9a)

|1+ Lo'l | 1+ L 6 | for Eom < M (4-9b)

A

where M is the frequency domain specification, Eyp is the maximum
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error of the previous design, L. is the compensation of the

o
previous design and L°, is the compensation to be designed.

The minimum values of |1 + L’O| are now found from Inequali-
ties (4-9). At zero frequency the magnitude of L”, is infinite

so that Inequalities (4-9) cannot be applied. However, dividing

Inequality (4-9a) by P, and setting w equal to zero one obtains

E .
28 Juo)]| < [1 )|

which sets a minimum value on |H’(o)l. Table 4-2 gives a
summary of the specification M, the values of ]l + LOI and the

corresponding E, of the previous design, and the minimum values

m

of |1 + L’o| for the frequencies of interest.

W M Eom |1+ 1] Min|l + L”|
0 1.13 1.32 |H(o)| = 1.22 |[H (o) | = 1.43
0.628 0.65 0.808 2.34 2.91
1.25 0.51 0.543 1.613 1.72
1.88 0.42 0.42 1.34 1.34
4.39 0.11 0.11 1.01 1.01
6.28 0.05 0.05 0.95 0.95
9.41 0.05 0.23 0.93 0.93

Table 4-2
Summary of Specifications
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The minimum values of |1 + L’O| correspond to regions in the
complex plane of acceptable -L°5. These regions are found to lie
outside circles about the point one with radius equal to the
minimum value of |1 + L’O|.

The regions of acceptable -L7, corrésponding to the values
given in Table 4-2 are shown in Figure 4,51 together with the
regions of acceptable -Lo for the time-invariant system. A
shortcoming of design procedure Qne is now evident. Since the
region of unacceptable -L°; is assumed to be a circle centered
about the point one, it is possibleAto exclude -L”°, from large
areas in the complex plane which would actually be acceptable,
thus resulting in an overdesigned system. This will be especially

true at high frequency where a small increase in the radius of the

»

circle results in a much larger required increase in IL’O
Unfortunately, it is at these higher frequencies that |L’0| must
be decreased to as small a value as possible in order to limit

the noise transmission:to the plant input. For example, consider
the regions corresponding to Q equal 6.28. If the boundary of
acceptable -L, for the time-invariant system were not known, the
boundary of acceptable -L°, allows !L'OI to become as small as can
be designed. Such a design could not satisfy even the time-
invariant system, much less the time-varying system, so that the
radius of the region would have to be increased which would

demand a much larger increase in IL’Ol than would really be
required.

It was decided to design -L’O.so that it would lie within the
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Tm —— Boundary of Acceptable Region of -Lg
4 — —-Boundary of Acceptable Region of -Lo

34 L6 Gw)

/"/ \

w = 0.628

. Figure 4.51
Polar Plot of -L"5(jw) with Boundaries
of Acceptable Regions of -L, and -L7,
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acceptable region of -L”, at w equal 0.628 but would lie approxi-
mately half way between the boundaries for -L, and -L7; at w

equal to 1.25 and 1.88. At w equal Eo 4.39, 6.28, and 9.42 only
the acceptablé regions of -L, would be considered. The reason for
this is that the specifications were basically satisfied with L,
except at w = 0.628 while a design based solely on the acceptable
region of -L°, would result in an underdesign at the higher

frequencies. The design which was chosen has an L’o(s) given by

L °5(s) = 26.88 (s +2.2) (s + 5.8)
s(s +2) (s +7) (s + 14)

The polar plot of -L”, is shown in Figure 4.51. The corresponding
H(s) is given by

H(s) = 14.78 8>+ 10s? + 28.76s + 25.52
s3 + 2352 + 140s + 196

and G(s) is found to be

G(s) = 2.2 S5+ 258" + 212.8853 + 744.8s” + 1165.07s + 685.98
sS + 25.8s% + 208.4s3 + 68052 + 1108.8s + 784

The higher frequency poles in L°5(s) and H(s) wiil be added in
the final design. The above H(s) satisfies the specification on
H”(o) given in Table 4-2. More lag is required in L”, than in
L, because of the higher rate of decrease required between the
frequencies 0.628 and 1.25.

A comment should be made concerning stability. Since the

example has only a time-varying gain, sufficient conditions for
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stability are known. A convenient criterion is the circle cri-
terion which is given in Reference (38). The system of this
example will be stable if the polar plot of -L”7, does not lie
within or enclose a circle of radius 0.8181 and centered at point
one. The above design satisfies this criterion so that the
system is assured to be stable.

The new design was tested by simulating the system and
determining the maximum magnitude of error. The duration of the
time-varying gain as illustrated in Figure 4,30 was set at seven
seconds. Since L7, is similar to L,, faster variations should
have little effect on the magnitude of the error as well as
variations after seven seconds. As with the first design, it was
found that the larger errors occurred for variations that start at
ten andvdecrease quickly to one and that variations starting at
values other than near ten produced errors no larger than those
observed with the gain beid constant at ten. It was also verified
that variations occurring after five or six seconds have little
effect on the error.

A plot of the maximum error corresponding to this design is
shown in Figure 4.52 along with the specification envelope and the
maximum error corresponding to the first design. An important
observation is that the increase in |1 + L’OI at a particular
frequency appears to have substantially affected the méximum
error only in the vicinity of that frequency. TFor example, an
increase of ‘L’o| at 0.628 did not cause an increase in IEI at

1.88 as could have occurred in a time-varying system since the
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Figure 4.52
Plot of Maximum [EI
For Second Design Using Procedure One
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frequencies are not independent. As was suspected, the system is
overdesigned; that is, |E| is considerably smaller than the
specifications in the low frequency region.

The time variations resulting in the maximum error at w = 0
and w = 0.628 are shown in Figures 4.53 and 4.54, respectively,
with the corresponding step response and error function. Note
that these variations are almost identical to the time variations
found for the first design showﬁ in Figures 4.31 and 4.34. The
step responses and error functions in the second design are also
similar to those in the first desigﬁ. .In the second design,
however, the peak overshoot is reduced to 19% from 32% in the
first design. The settling time in the second design has also
been significantly reduced.

Although the design satisfies the frequency domain specifica-
tion, the error function does not fall within the time domain
specification envelope. Nevertheless, the step response is well
behaved and would undouhtedly be considered acceptable. 1In
reality, the time domain specification envelope should probably
have been chosen to allow larger errors in the range 0 to 1
second since fast rise time is generally not considered an
undesirable property in a system. To give an indicétibn of the
step response for other variations, variations are shown in
Figures 4.55 and 4.56 with their corresponding step responses

and error functions.
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4.6 Second Design: Procedure Two

In design procedure two the approach is simply to use the
regions of Po/Peq from the first design to determine regions of
acceptable —L'O for the second design. The regions of Po/Peq
for the first design are shown in Figures 4.38 through 4.43,
and the specification regions are given in Figures 4.27a through
4,27f. Using techniques previously described in the first design,
the acceptable regions of -Lg aré determined as shown in Figure
4.57. Except at the frequency 0.628, the acceptable regions of
-L”°, do not require the magnitude of -L7, to be substantially
greater than was required in the first design. This is expected
since the first design satisfied the specifications at frequencies
1.25 and higher.

A design satiéfying the specification regions was made by trial

and error and the resulting L75(s) is given by

L’o(s) = 25.55 s *5
s(s + 7) (s + 12)

The polar plot of L-, is shown in Figure 4.57. The design
satisfies the circle criterion for stability which is given in
Reference (38) so that system stability is assured. The corre-
sponding expression for H(s) is

H(s) = 15.15 s2 + 7s + 10
s2 + 19s + 84

and the expression for G(s) is

% + 2153 + 149.55s2 + 360.86s + 275.52
s% + 21.8s3 + 141.2s2 + 311.2s + 336

G(s) = 2.2
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Figure 4.57
Boundaries of Acceptable Regions of -Lg with
Polar Plot of -LS(jw)
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The high frequency poles will be added in the final design. This
design requires more lag than the first design because of the
higher rate of decrease between the frequencies 0.628 and 1.25.
It should be pointed out that the magnitude of E is somewhat
smaller in this design than in the second design using procédure
one. The design was tested by simulatiﬂg the system and determ-
ing the regions of Po/Peq' The duration of the time-varying gain
illustrated in Figure. 4.30 was again set at seven seconds.
Simulations were run for over two hundred variations with the
variations being both specifically sélected and chosen at random.
The resulting regions of Po/Peq are shown in Figure 4,58 through
4,63, along with the acceptable regions of PO/Peq corresponding

to L The regions of PO/Peq fall within the acceptable regions

o°
of Po/Peq which means that the design satisfies the specifications.
However, since the regions of PO/Peq do not touch the boundaries

of acceptable PO/Peq at all frequencies, the system\is overdesigned
although the overdesign is not appreciable.

Obsefve that the regions of Po/Peq for this second design are
almost identical to the regions of Po/Peq found for the first
design. This ?esult is extremely promising for design procedure
two since, for this example at least, the regions of Po/Peq do not
changé appreciably for changes in L,. Thus, designing an L,
based upon regions of PO/Peq corresponding to a previous design
does not appear to be an unreasonable approach.

To give an»indication of the type of step responses which

this time-varying system exhibits, a number of step responses with
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Region of PO/Peq for w = 1.88
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the corresponding error functions and time-variations are shown
in Figures 4.64 through 4.71. For comparison, the first two
responses correspond to time-invariant conditions with the gain
set at ten and one, respectively. As with the earlier designs,
the time-variations cause an increase in overshoot and settling
time. The maximum overshoot in the time-varying case is approxi-
mately 24%, which is an increase over the 197 observed for the
second design using procedure one and a decrease over the 327%
observed for the first design. Such a result is expected since
the magnitude of L°, for this design is smaller than the magnitude
of L’y in the second design using procedure one and is larger

than the magnitude of L”, in the first design.

4.7 Third Design

In making the second design it was found that a design based
on procedure one; which.is the technique using the maximum |E|,
will generally result in an overdesigned system because the
acceptable regions of -L, are assumed to be circular. Use of the
second procedure, which is based on the regions of PO/Peq, results
in the more accurate shape of the acceptable region of -Lg;
however, the size of the acceptable region cannot be as precisely
determined as can be done by the method in procedure one. The
third design will be based on a combination of procedures one and
two. The shape of the acceptable regions of -L, will be assumed
to be as was found in the second design using procedure two, while
the size wili be determined from the maximum error.

The maximum error magnitude was found for the second design
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based on procedure two and is shown in Figure 4.72. Also shown in
Figure 4.72 are the maximum error magnitudes for the second design
based on procedure one and the maximum error magnitudes for the
first design. The first design is not satisfactory, while both
of the second designs result in an overdesigned system. However,
in the second design based on procedure two the magnitude of L,
needs to be decreased only a small amount at the frequencies 0.628,
1.23 and 1.88 for the error to jﬁst lie on the specification
curve. To determine the amount of decrease needed at w = 0.628,
it will be assumed that the magnituae of the error varies linearly
with the magnitude of L, between the first design and the second
design based on procedure two. The difference in the magnitude
of the error of the second design can be increased by .025 which
is a 16% change based on the 0.156 difference. The acceptable
region of —Ld at w = 0.628 for the third design is then determined
as follows.

Figure 4.73 shows % plot of the acceptable region of -L,y at
0.628 for the first design and for the second design based on
procedure two in the area of interest. The magnitude of L, for
the first design at 0.628 is 2.02 and for the second design is
2.61l. The difference in the two magnitudes is 0.59. The
boundary of -L, at w equal 0.628 for the third design will be
placed at 16% of the difference between these two magnitudes as
shown in Figure 4.73.

At w equal 1.25 the_magnitude of acceptable -L, needs to be

changed only a little; thus, -L, for the third design will be
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First Design

Specification

Second Design (Procedure One)

Second Design (Procedure Two)

Figure 4,72
Comparison of Maximum |E| for
First and Second Designs



X\

A Im Acceptable -L, at 0.628

for Second Design Based
on Procedure Two

Acceptable -L, at 0.628 for

First Design

Figure 4,73

Boundaries of Acceptable -L, with Polar
Plot of -L, for the Third Design
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chosen to fall approximately half way between the magnitudes of -Lj
for the first design and -L, for the second design based on -
procedure two. At the frequencies 1.88 and higher the magnitude
of -L, will be chosen the same as the magnitude of -L, of the
first design since in the first design the specifications are
just met at these frequencies. The resulting acceptable regions
of -L, for the third design are shown in Figure 4.73.

The polar plot of the third design is shown in Figure 4.73
together with the acceptable regions of -L,. The expression for

Lo(s) of the third design is

L,(s) = 24.61 s + 5
) s(s + 8) (s + 10)

This design satisfies the circle stability criterion so that
system stability is assured. The corresponding expression for
H(s) is

: 2
H(s) = 13.54 s + 7s + 10
s2 + 18s + 80

aﬁd for G(s) {is

s* + 20s3 + 140.6s% + 332.3s + 246.1 |

G(s) = 2.2
s + 20.8s3 + 134.4s2 4+ 296s + 320

The high frequency poles will be added in the final design. Note
that this design is very similar to the second design‘based on
procedure two. The major difference is the small reduction in the
magnitude of L, over all frequencies.

The design was tested by simulating the system and determining

the regions of PO/Peq as well as the magnitude of the error. As
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with the second design, the duration of the time~varying gain
which is illustrated in Figure 4.30 was set at seven seconds.
Almost 300 variations were run with variations being both specifi-
cally selected and randomly selected. It is again felt that
reasonably accurate results were obtained.

The maximum error magnitude is shown in Figure 4.74 and the -

regions of Po/Pe are shown in Figure 4.75 through 4.80. As was

q

observed in the first design, the maximum errors occurred for time-

variations starting at ten and quickly decreasing to one. The

only significant increase in error due to the time-variations

occurred at the frequencigs zero and 0.628. The time variations

causing the maximum error magnitude at w equal to zero and 0.628

are shown in Figures 4.8l and 4.82; respectively, along with the

corresponding step response and error function. Note in Figure

4.74 that the magnitude of the error is slightly larger than the

specifications in the région of 0.628. Otherwise, the system

just satisfies the specifiqations. Figure 4.75 also shows that

the specifications are not exactly met at 0.628 since the region

of w does not‘fully lie within the acceptable region of Po/Peq'
Since this system is very close to meeting the specifications

exactly, it is very likely that this design would be considered

acceptable. A series of time-variations with the corresponding

step responses and errors are shown in Figures 4.83 through 4.88.
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Figure 4.74
Maximum ]ET for Third Design
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A Im ' Unacceptable Region of PO/Peq

Boundary of
Acceptable Po/Peq

Acceptable Region of Po/Peq

Region of PO/Peq
1
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. Figure 4.75 :
Region of PO/Peq for w = 0.628, Third Design
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A Im Unacceptable Region of Po/Peq

11 Boundary of Acceptable Po/Peq

Acceptable PO/Peq

Region of Po/Peq "\\\\
— : o
1 2 Re

Figure 4.76
Region of PO/Peq for w = 1,25, Third Design
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Boundary of Acceptable PO/Peq

Unacceptable
Region of
Po/Peq

Acceptable Region of PO/Peq

Region of PO/Peq

4

Figure 4.77

Region of PO/Peq for w = 1.88, Third Design
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Figure 4.78

Region of PO/Peq for w = 4.39, Third Design
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Figure 4.79

Region of Po/Peq for w = 6.28, Third Design
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Unacceptable Region of Po/Peq

oundary of Acceptable PO/Peq

. Region of Po/Ps, —
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Figure 4,80
Region of P /P, for w = 9.42, Third Design
o/ “eq
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7

Note that the maximum overshoot is approximately 25% and the
maximum settling time is six seconds. The third design is
basically satisfactory; however, the system design must be
completed by adding the high frequency poles in Ly. A fourth

design will now be made to include the high frequency poles.

4.8 Addition of High Frequency Poles

With only minor modification to L, in the region of one radian
the third design would be satisfactory from the point of view of
system response and noise transmission in the low frequency region;
however, it is far from optimal when noise transmission in the
high frequency region is considered. The high frequency poles
necessary to reduce the noise transmission at high frequencies
will now be added.

An analysis of the noise transmission problem can be carried
out in basically the same manner as presented by Horowitz#3 for
linear time-invariant s&stems. Due to the linearity of the system,
the system input can be assumed to be zero wifhout affecting the
results. Referring to Figure 4.1, with the system input zero the

plant input Z is given by
Z(jw) = -H(jw) [ N(jw) + C(jw)]

which can be written

zGw) | 1+ rGD) U9 yGey nGw).
| 2 ()
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Rearranging the expression, one can obtain

- Lo(jw)
20 = 5=t ) (4-10)
Peq () + Lo (3w)
where
. - C(Gw)
Peq(Jw) Z(jw)
and

Lo(jw) = Po(jw)H(jw) .

In the low frequency region the characteristics of L, are dictated
by the system response. That is, at low frequencies L, must lie
within acceptable regions in'the complex plane up to some frequency
beyond which ILO| may be decreased as quickly as possible. In the
high frequency region the characteristics of L, are dictated by
Equation (4-10) which describes the noise transmission from the
noise source to the plant input. To show that it is desirable to
decrease |L0|, suppose ILOI were made lérge in the low frequency
region. The'noisé transmitted to the plant input would approxi-

mately be given by

R .
Z(J(L\)-/- Peq(:]w) N(Jw) .

At high frequencies the transmission of the time-varying plant is
greatly reduced so that IPeq(jm)I becomes small which results in

large values of noise transmission to the plant input. Thus, !Lo|
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should be made as small as possible within the high frequency
region.

The reduction of ‘Lol in the high frequency region is
accomplished by including high frequency poles in the design of

L A large number of poles cannot be added too low in the

o*
frequency range'for otherwise instability will result. The
procedure is then to add poles at increasing frequencies as quickly
as possible while maintaining both a sfable system and the proper
system response. The problem is now to determine at ﬁhat frequency
one may stop adding poles.

Agaiﬁ consider Equation (4-10). At high frequencies |LO| is

smaller than ‘Po/Peq| so that the noise component of the plant

input Z can be approximated by the expression

LQ(%w)
. Peq jw)
Z(jw) = —— -
jw) 5. (j0) N(jw)
Peq(jw)
or
z(jw) = (9 N(jw) = BH(Gw) N(w) (4-11)
Po(jw) ‘

F?om this expression, which is intuitively evident, it is seen
tﬁat poles should be added to Lg until the desired amplification
factor between the noise.sourge and plant input is achieved. The
desired amplification will depend upon the system and the noise

source. In some cases it may be satisfactory to stop adding
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poles while IH(jw)l is larger than unity, while in other cases it
may be desired to add poles until |H(jw)| is much-less than unity.
In this example it will be assumed that poles will be added until
\H(jw)l becomes less than unity — that is, until lLo(jw)I becomes
smaller than |Po(jw)| as the frequency is increased.

The approach in making the fourth design is to assume the
acceptable regions of -L, corresponding to the third design are
also acceptable wheﬁ high frequency poles are added. ©Note that
this does not mean that high frequency poles will merely be added
to the third design, because the addition of such poles will
cause an unacceptable decrease in ILO] in the region of five to
ten radians unless they are placed at extremely high frequencies.
The high frequency poles must be incorporated as an integral part
of a new design based ﬁpon the assumed acceptable region of -L,.

The polar plot of L, for the fourth design is shown in Figure
4.89 together with the acceptable regions and the stability region
corresponding to the circle criterion. The expression for Lg(s)

is given by

Lo(s) = 56.16
s +5

s(s +10)(s + 18) [57+ 1][25+1][§5+1][5—+1] (4-12)

70

The expressions for H(s) and G(s) were not found as a ratio of
polynominals as was done in the previous designs. Instead, the
system was simulated by simulating the various components of H and

G. The expfession for H(s) is
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L (w)

l—— (o]

w=0.628

w=1.25

w=1.88
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gﬁilﬁi\\\ Stability Boundary

Y

Figure 4.-89
Polar Plot of ~L, for Fourth Design with
Boundaries of Acceptable Regions of -Lo
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H(s) + 30.88 s2 + 7s + 10 1 1 1 1

2
s + 28s + 180 s s s S
27+1 40+1 60+170+1

and the expression for G(s) is

G‘(S) = 1 + LO(S) 2.28(5 + 2)
) s2 + 2.8s + 4

where Lo(s) is given above.

In adding the high frequency poles the critical region was
found to be between five and ten radians per second. As poles are
added at 20 or 30 radiams, lag is introduced between five and ten
radians which causes -L  to enter the circular stability region.
Although entering the stability region does not imply an unstable
system, system stability is not assured. The magnitude portion of
the Bode plot of lLOI for the fourth design is shown in Figure 4.90
with the plot of lLo‘ corresponding to the third design and the
plot of lPol. Note that the third design and the fourth design
are identical below four radians per second. From four to 25
radians the magnitude of Ly for the fourth design is larger than
the magnitudé of L, for the third design. This increase allows a
more rapid decrease of ILo‘ in the region greater than 25 radians.
The point where |L0| for the fourth design crosses |Po‘ is at 94
radians so that poles are not added above 94 radians.

The fourth design was simulated and the maximum value of ‘EI
was determined which is shown in Figure 4.91. It is seen that lE|
significantly exceeds the specifications in the region of 0.25 to

1.6 radians, The step response corresponding to a function for
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which the specification is exceeded is shown in Figure 4.92.
Note the "dip" in the error as a function of time in the region of
0.6 seconds. Contrary to what might be expected the "dip" did
not result in a violation of the specification. The main fre-
quency component in the "dip'" is around 12 radians and the
specifications were not violated in this high frequency region,
although an increase in ’Lol was observed in this region over that
seen in‘the third design. The Viblation of specifications in the
region of 0.25 to 1.6 fadians is due to the addition of the high
frequency poles and is not an unexpeéted occurrance in a time-
varying system, |

There are now two possible modifications of |LO{ which will
reduce the value of [E|. Either the magnitude of |LCI may be
increased in the appropriate low frequency range or the high
frequency poles may be moved to higher frequencies which results
in raising ILOI in the high frequency range. The design procedures
give a formal and systemétic approach to increasing IL0| in the
frequency range where the specifications are violated; however,
placement of the high frequency poles must be done on a trial and
error basis.

The amplification of the noise from the noise source N to
the plant input is a more severe problem in the higher frequency
ranges than in the lower frequency ranges. ' One reason ‘is that the
noise usually has larger components in the highér frequencies
than in the lower frequencies. But more important, it is the

higher frequencies where |P0/Peq[ is small and |H| is large which
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leads to large amplification of the high frequency noise com-
ponents as is seen from Equation (4~11). Thus, increasing ILOI
in the lower frequency range is preferred to relocating the high
frequency poles to still higher frequencies and thus increasing
ILol in the high frequency range.

The fourth design was modified in order to observe the effect
of both increasing |LO| at low frequencies and relocating the
high frequency poles; The effeét of relocating the high frequency
poles will first be discussed. The last three poles of |Lo|,
Equation (4-12), were moved to 100 radians. This new system will
be referred to as the first modification of the fourth design or
simply Mod One. The expression for L,(s) corresponding to Mod

One is

Lo(s) = 56.16 s +3

s(s + 10) (s + 18) [_z.;+ 1} [s__+ 1]3

100

The expressions for H(s) and G(s) is evident from the corresponding
expressions of the fourth design and will not be given. The

for the fourth design and for Mod One is

difference between |L0|

most easily observed from Bode plots of the magnitude portion of
L, for the two systems which are shown in Figure 4.93. Although
the difference in the two designs may not appear to be signifi-~
cantly different from inspection of the Bode plot, the‘difference
is actually quite large due to the fact that noise power is
calculated from a linear integration over frequency. The maximum

value of |E| for Mod One is shown in Figure 4.94. The specifi-

cations are violated in the region of .5 to 1.5 radians, but the
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value of |E| is shown in Figure 4.95. Note that the '"dip"
which was observed in the error of the fourth design (see Figure
4.92) is not present in Mod One. This design is unacceptable not
only because it violates the specifications but also because it
does not represent the fastest decrease in iLéI that is possible
in the high frequency region.

A second modification was made to the fourth design to observe
the effect of incredsing ILOl in the low frequency region. The
modification consisted of increasing the magnitude of [Lol in
the low frequency range with the high frequency poles unchanged.
This new system will be referred to as the second modification of
‘the fourth design or simply Mod Two. As in the third design, a
combination of design procedures one and two was used to determine
the acceptable regions of -Lg. The shape of the acceptable region
of -L, was assumed to be as shown in Figure 4.89 and the design
equation, Equation (4-9), was used to determine the proper size
of the acceptable regigns. The acceptable regions of -L, for
the second modification are shown in Figure 4.96 together with a
polar plot qf -L, for Mod Two. The magnitude portion of the Bode
plots of L, for Mod Two together with the fourth design are shown
in Figure 4.97. Note that in Mod Two the values of |L,] do not
come as close to lying on the boundaries of the acceptable regions
as does |LOI for the fourth design shown in Figure 4.89. This is
because it proved to be difficult to have the large magnitude of
ILOl required at 0.628 radians and at the same time decrease ILOI

to the minimum magnitude at 1.25 and 1.88 without violating the
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_w = 0.628

= 1.25

/w

_,__——__\Zfl Stability Boundary
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<

9.42 1
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Figure 4.96
Boundaries of Acceptable Regions of -Lj
With Polar Plot of ~L, for Fourth Design, Mod 2
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specifications at 9.42 or even maintaining system stability. Note
that if the point 0.1818 on the real axis is enclosed by -L,, the
system is unstable when the gain is constant at ten from a time-
invariant analysis. The plot of ~L, for Mod Two slightly enters
the stability circle so that the system stability cannot be
assured. The system proved, however, to be stable for all time-
variations tested.

A slight improvément can be made in fitting -L, to the
acceptable regions of -L, by moving the pole which is located at
ten radians to eight radians, moving the zero which is located at
6.4 radians to four radians, placing an additional zero at 2.3
radians and placing an additional pole at 1.7 radiams. However,
this small improvement was not felt to be worth the additional
complexity in the system and will not be discussed in detail.

The maximum value of the error magnitude for Mod Two is shown
in Figure 4.98. Figure 4.99 shows a step response for one
function which corresponds to an extreme value of IE[. Note
that the "dip" in the error at approximately .5 seconds is larger
than was observed in the fourth design and is in fact large
enough to result in a small violation of the specification in the
region of six to ten radians where lEi reaches a value of 0.6.
The specifications are also not met in the region of 0.5 to 1.5
radians., This design would not be considered acceptéble for not
only does it violate the specifications but also stability is not
assured,

A fifth design will now be made. It is expected that ILO‘

for the fifth design should lie somewhere between Mod One and
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Mod Two, since in Mod One ILo| was too large in the high fre-
quency regions and not quite large enough in the low frequency
region, while in Mod Two'ILO| was not large enough in the high
frequency region and appeared to be a little too large in the low
frequency region, The magnitude of |LO| for the fifth design at
low frequencies'will be chosen to lie approximately half way
between the magnitude corresponding to Mod One and Mod Two. The
high frequency poles‘will then be placed so that a polar plot of
-L, lies just outside the stability circle in order to assure
system stability. Note that this approach departs from the design
procedure but instead draws upon the insight which has been
gained in the previous designs.

The expression for Lo(s) for the fifth design is given by

Lo(s) = 75 755 12.5) (s + 20) Eﬁii 1] [%‘* 1] [S—'Jr 1] [§_+ 1]
5

30 70 85

The polar plot of -L, is shown in Figure 4.100. For comparison the
acceptable regions used in the fourth design are also shown in
Figure 4.100; The relatively large magnitude of L, in the region
of nine radians is necessary in order to be able to reduce |Lo|
more rapidly in the higher frequency regions. This can be more
clearly seen from a Bode plot of |L0| which is shown in Figure
4.101. Also shown in Figure 4.101 are plots of |Lo|'corresponding
to Mod One and Mod Two. Note that the magnitude of ILy| for the
£ifth design lies approximately half way between the magnitudes of

lLol of Mod One and Mod Two at both high frequencies and low
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frequencies., The plot of the maximum errox magnitudes for the
fifth design is shown in Figure 4.102. It is seen from Figure
4.102 that the specifications are satisfied. The choice of L,
was fortunate because the value of lEl just meets the specifi-
cations in the regions of one and 5.5 radians which are the
critical frequency regions. In the region between two to four
radians |E| is much smaller than is required by the specification
which is due to the difficulty in making |LO| as large as required
in the region of one and six radians, while at the same time
small enough to just meet the specifications in the region
between two and five radiams.

The fifth design is very close to the best design possible.
That is, the design satisfies the specification, but any signifi-
cant decrease in the magnitude of ILO‘ in any frequency range will
either result in a violation of the specifications or an increase
of the high frequency noise transmission. As has been mentioned,
the critical frequency ranges are around one and 5.5 radians. If
the high frequency poles are moved to lower frequencies in order
to reduce the noise transmission, the specifications will be
violated at both one and 5.5 radians. Decreasing |LO| in the low
frequency range will result in a specification violation in the
region of one radian unless the high frequency poles are moved
farther out in the frequency range, thus increasing tﬁe noise
transmission. The fifth design is thus selected as the final
design.

The expression for H(s) is given by
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H(s) = 41.25 (s +2) (s + 6)
CrE e e [ 1[5+ ][]

and the expression for G(s) is found from the relation

G(s) = I:l + Lo(s)] Ty (s)
PO(S)

where

To(s) _ ) s s(s + 2)
P, (s) T s?+ 2.8 + 4

A sampling of step responses for the fifth design is shown in
Figure 4.103 through Figure 4.108. The maximum overshoot was
found to be 247% and the maximum rise time is six seconds. Observe
in Figure 4.103 that the "dip" in the error around 0.5 seconds is
still present but its magnitude has been reduced to the point
that the specifications are not violated. Note also the high
frequency variations present in the error shown in Figure 4.104
and Figure 4.105. These variations are not present in the third
design, so are thus a result of the decrease in |LOI in the high
frequency region.

The regions of PO/Peq for the fifth design are shown in
Figures 4.109 through Figure 4.114. The regions closely resemble
those found for the third design which are shown in Figures 4.75
through Figure 4.80. However, the regions for the fifth design

are somewhat larger than those for the third design, especially
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Figure 4.109
Region of Po/Peq’ Fifth Design, w = 0.628
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Unacceptable Region of Po/Peq

Acceptable Region of PO/Peq

Region of PO/Peq

Figure 4.110

Region of PO/P Fifth Design, w = 1.25
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eq’ Fifth Design, w = 1.88
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Region of PO/P Fifth Design, w = 4.39
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Region of PO/Peq

Acceptable Region of PO/Peq

Figure 4.114

Region of PO/Peq, Fifth Design, w = 9.42
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in the critical area around the origin. The addition of the high
frequency poles in L, has thus increased the size of the regions

of PO/Peq but the basic shape is unchanged.

4.9 Summary

A system having a time-varying gain which can range between
values of one and ten has been designed to meet a set of frequency
domain specifications. The design is close to optimal in the
sense that noise transmissioh to the plant input is minimized.

In the process of carfying out the design a good deal of insight
about the design procedure and the éystem was obtained.

The first comment concerns the specifications. The frequency
domain specifications which were chosen appear to have been
reasonable since the resulting system has a well-behaved step
response that would undoubtedly be considered satisfactory.
However, the system error as a function of time does not fall
within the specificatioﬁ envelope shown in Figure 4.7 which was
used to arrive at the frequency domain specifications. This is,
of course, due to the fact which was discussed earlier that error
functions can.satisfy the frequency domain specification and still
fall outside the time domain error envelope. The time domain
envelope is exceeded only because of a fast system rise time.
Since a fast rise time is generally not considered an undesirable
system property, it appears that the time domain envelope was not
properly selected in the first place. 1t appears thét the time
domain envelope should have allowed the system error to deviate

much more near the origin than was actually allowed. 1If it were
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desired to have the slower rise time, it would be necessary to
modify the frequency domain specifications. More study of the
relationship between the time domain specifications and the
frequency domain specifications would be necessary, however,
to determine the specific changes required.

The approach.of using the time-invariant design as a starting
point appears quite satisfactory. In the example the time-
invariant design indiéated the shape of the regions of -L, which
changed very little during the design. The assumption that small
changes in L, cause only small changes in the regions of PO/Peq
proved to be valid for the example. In fact, changes in L, that
were not so small caused only relatively small changes in the
region of PO/Peq as was found in the fourth and fifth design when
the high frequency poles were added. Although the assumption will
have to be verified for other types of systems in order to obtain
any generality, its verification in this example is very promising
for the use of the regions of Po/Peq.

As was mentioned earlier, an additional advantage to using the
time-invariant design as a starting point in the procedure is
that it allows one to readily observe the additional magnitude of
L, needed to compensate for the time-variations. Figure 4.115
shows the Bode plot of |LO| for the final design together with the

plot of {LO| for a time-invariant design which includes the high

frequency poles. Also shown in Figure 4.115 is the plot of IPO
The magnitude of |Lo‘ for the time invariant design is substantially

less in both the high frequency and low frequency regions than is
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|L0| for the time-varying design. However, in the region between
two and six radians the difference in ILOI between the two designs
is not large and in fact |L0| for the time-varying design could
probably be reduced somewhat. Thus the time-variations appear to
have little effect on the system response in the range of two to
six radians. .

The example also pointed up a serious flaw in design procedure
one. The flaw, whicﬁ was found in the second design, is the fact
that the acceptable regions of -L, are assumed to be circles
centered at point one. Such an assumption would undoubtedly lead
to an overdesigned system with little indication as to just what
to do to eliminate the overdesign. This is especially true in
the high frequency region where an overdesign is the most
undesirable. A problem is also present with procedure two in
that it is difficult to determine precisely the size of the
regions of Po/Peq which means that the precise size of the regions
of acceptable -L, is also difficult to determine. It was found
that a combination of the stroﬁg points of the two procedures
resulted in an improvement in the design procedures. The regions
of Po/Peq of procedure two was used to determine the shape of the
acceptable regions of -L, while IE| of procedure one was used to
determine how much the regions should be increased or decreased
for the next design. This combination appears to reéult in a
more powerful procedure than either design procedure one or two
alone.

It was also found in the example that the addition of the

high frequency poles in L  had a large effect on the low frequency
q y o
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error. Thus, it would ﬁrobably be desirable to include the high
frequency poles in L, from the beginning of the design rather than
designing L, at low frequencies before adding the high frequency
ﬁoles as was done in the example. There‘is, however, an advantége
in designing at low frequencies first and then adding the high
frequency poles.. The advantage is that it is possible to examine
the effect of changing only portions of Ly. If the poles are
added early in the design, care must be taken in modifying Lo
since a change in the high frequency part of L, affects the low
frequency error and vicé versa. However, in the example, the low
frequency portion of.LO did not affect the high frequency error
as much as the high frequency portion affectéd the low frequency
error. |

It is also of interest to note the type of time-varying gain
system for which a design.is possible. If the time-invariant
portion of the plant is minimum phase, that is, all.poles and
zeroes are in the left half plane, then it is possible to increase
the magnitude of L, indefinitely without violating the stability
criterion (see Figure 4.100) so that the specifications will
eventually be met. On the other hand, if the time-invariant
portion of the plant is nonminimum phase, then it is not possible
to increase the magnitude of L, indefinitely without violating the
stability criterion. Thus, for such systems it may ndt be possible
to increase the magnitude of L, sufficiently to satisfy the
specifications. Therefore, if the time-invariant portion of the

plant is minimum phase, a design is always possible; otherwise,
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the possibility of a design depends upon the particular system
and ﬁhe specifications.

Even though a strict aﬁplication of the design procedure
itself may not lead directly to an optimal design, the procedufe
does provide a systematic approach to arriving at an acceptable
design provided stability can be maintained. 1In the example the
insight gained in applying the design procedures allowed the
design to be carried to a point very close to the optimal. It
is anticipated that this will generally be the case in applying
these design procedureg.

The example has demonstrated that suitable frequency domain
specifications can be obtained and the design procedures can be

successfully applied to systems with a time-varying gain.



CHAPTER V
CONCLUSIONS

A study of the time-varying system design problem which was
outlined in Section 1.1 has been undertaken. After a review of
the previous reseérch in the field of time—varying systems it was
decided to employ time-invariant compensation and to design for a
desired transfer function for which procedures are well developed
rather than attempt to design for an impulse response which would
require a study in itself. An effort was first made to obtain an
analytical solution of the system equations from which a design
procedure could be developed. Unfortunately, the attempt was
unsuccessful so that efforts were turned to the utilization of
numerical solutions of the system equations which could be
obtained from computer simulations.

It was possible to develop two design procedures which are
based on the numerical solution of the system equation. The basic
difference in the two procedures is.that procedure one assumes the
acceptable regions of fhe nominal loop gain L, to be circular,
while in procedure two the shape of the acceptable region is
determined in the process of the design. Examples were presented
which illustrated that it was possible to carry out the steps of
the procedures using computer simulations.

The procedures as presented do not constitute a complete’

solution of the time-varying system design problem. One
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difficulty which must be resolved is the determination of
satisfactory frequency domain specifications. Although it is
possible to arrive at specifications which intuitively appear
reasonable, the exact relationship between time-domain and
frequency domain specifications are unknown. A second difficulty
is the determination of a general stabiliFy criterion for time-
varying systems. Since necessary conditions for stability-are
known for systems having a time-varying gain, it is usually
possible to design such systems so that stability is guaranteed.
(It may not be possible to maintain stability if the time-
invariant portion of the plant is non-minimum phase; otherwise,
there will be no difficulty.) Nonetheless, in the design of a
general system the procedures themselves do not assure stability;
however, any future stability criterion which is specified in the
frequency domain can readily be incorporated into the procedures.

A design example of a system having a time-varying gain was
carried out in depth. Practical frequency domain specifications
were developed and a design was obtained which is close to the
optimal design. At each step the system step responses were
examined and were compared to the desired step response. It was
seen that the step responses behaved as one might expect and that
the step responses of the final design were entirely satisfactory,
thus showing that the frequency domain specifications wére also
satisfactory. This example demonstrated that it was possible to

arrive at satisfactory frequency domain specifications and by
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employing the insight gained in carryiﬁg out the procedures, a
design could be obtained which wés close to the optimal design. It
was seen that in the example the assumption of circular acceptable
regions of L, which is made in design procedure one was highly
inaccurate. In fact, it was found that a combination of procedures
one and two gave better results than either of the two procedures
individually. The combined method consists of determining the
shape of the acceptable regions of L, from procedure two, while the
size of the acceptable regions are determined from procedure one.
On the whole the example indicat?d that the design procedures

could be satisfactorily carried out and would yield acceptable
results.

In carrying out the design examples presented in this paper,
simulations were successfully carried out on analog, digital, and
hybrid'computers. The advéntage of the analog computer is its
ability to solve the system equations quickly; however, it requires
constant attention by the operator in order to perform the many
runs required in searching for the maximum E and the region of
Po/Peq. Operaéor action also increases the total run time con-
siderably. The advantage of the digital computer is that it can
perform the required runs automatically; however, it requires a
good deal of time to complete the calculations. The hybrid
computer is able to utilize the good features of both the analog
and digital computers. The analog portion of the hybrid computer

is utilized to obtain a quick solution to the system equations,
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while the digital portion is used to control the analog and read
out the results. The hybrid operations are much faster than
either the digital or analog alone and would be the preferred
method of performing the calculations if such a computer were
available.

An additionél area of research is the determination of worst
case time variations.‘ That is, the determination of those
variations which result in the maximum value of E and which fall
on the boundary of the region of PO/Peq. At present the method
of determining the maximum value of E and the region of PO/Peq
is to run a large number of possible variations as was done in
the examples. This approach is successful when there is no more
than one or two time-varying parameters. However, if the system
has several time-varying parameters, the number of possible
combinations of these variations soon become prohibitively large
to try to determine the worst case variations simply by testing
representative variations of all possible combinations. If the
worst case variations were known, there would be ne need for a
search and the time required to carry out the design would be
greatly reduced.

It can not be stated the design procedures are ready for
general application to the design of time-varying systems because
of the problem of system stability and the problem of determining
the worst case variations for systems having a number of time-
varying parameters. However, the procedures can be successfully

employed on systems having a time-varying gain. In addition, the
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concepts apply to any time-varying system; so, depending upon the
case, it may be possible to apply the procedures to more general
systems. Thus, even though the procedures are limited, they are

a useful tool in the practical design of time-varying systems.
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APPENDIX A

In this appendix it will be shown that if the system remains
stable, the magnitude of the error can be reduced to as smali a
value as desired by increasing the magnitude of the feedback
compensation H(jw).

Employing the abbreviated notation of Section 3.2, the design

equation, Equation (3-9), is given by
Po7lE + HE = -AP~1(C_ + E) (A-1)

The expressions for E and AP~ are

-1 = p-1 _ -1
AP =P Py

Substituting these expressions into Equation (A-1) it is possible

to obtain
-1~ _ -1 _
HC + P™'C = HCo + PO C0 (A-2)

It is important to understand the meaning of Equation (A-2). A

block diagram of the system is shown in Figure A.l.

R R 4 - C
& G _—— —_— P Copnn Lo ‘
Y
-H
Figure A.1l

Block Diagran of System Under Study



The system equation is
GR = P~lc + HC . (A-3)

Comparing the system equation with Equation (A-2) it is seen that

one can write

e + p-lc = GR = HC, + Py7C,

That is, both the right hand side and the left hand side of
Equation (A-2) are equal to the output of the prefilter. This,
of course, is due to the fact that in Equation (A-2) the plant

input is considered a constant and the difference in C and C,

288

is due only to the difference in the plant P and the nominal plant

Py Thqs, the output of the prefilter is always the same
irregardless of the plant. The system output in turn is such
that the relation P-lc + HC is always equal to the prefilter
output.

Another point that should be recalled is that in Equation
(A-3) the plant output is not unique for a given plant input.
This is due to the fact that the system output is made up of the
system input and the complementary solution which is uniquely
determined by the systgm's initial conditions.52 1In determining
the step response of a stable system the initial conditions are
set to zero so that the complementary solution is also zero and
the output consists only of the forced solution which is uniquely

determined by'the system input. If the system is unstable,

however, the complementary solution will grow without bound once
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an initial condition is displaced slightly from zero by noise.
Thus, if the system is unstable, the complementary solution will
not be zero so that the system output will not be uniquely
determined by the system input., Thus, in Equation (A-2), if the
system is stable, C is uniquely determined by Co and vice versa
since the initiai conditions are set equal to zero in the
determination of the system step response. If the system is
unstable, however, this uniqueness does not hold.

In describing the system it is convenient to borrow notation
from classical linear time-invariant system analysis. Let the
system type number of a time-varying system be the same as the
type number if the ﬁlant parameters were time~-invariant.4l That
is, ifvthe plant parameters were time-invariant, then the plant
of a type O system has no poles at the origin, while the plant
of a type 1 system has a pole of order one at the origin, the
plant of a type 2 system has a pole of order two at the origin,
and so forth,

Consider next the relationship between the nominal plant and
the desired step response. The desired step response Co must be
chosen such that it can be delivered by the nominal plant P, as a
result of a reasonable plant input. That is, it must not be
necessary that the plant input contain impulse functions or
derivatives of impulse functions in order for the nominal plant
to deliver the desired step response when the plant is the nominal

plant. This will only be true if the input to the plant is
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physically possible. Thus, if the system is stable, the input to
the nomiﬁal plant P, must be bounded. In addition, if the system
is type 0, e(t) will settle to a constant and if the system is
type 1 or higher, e(t) will settle to zero. Therefore, for type
0 systems the Fourier transform of the plant input will only have
a pole at frequeﬁcy zero and no other poles, (i.e., all the poles
of the Laplace transform of z(t) will be in the left half plane
except for one pole a£ the origin). For type 1 systems or higher
the Fourier transform of the plant input will have no poles (i.e.,
all poles of the Laplace transform of z(t) will lie in the left
half plane), The Fourier transform of the input to the nominal

plant is given by
- -1
Z = Po_ Co

which is independent of the feedback H; thus, the magnitude of
Po“lc is independent of H and is bounded for all w except in
type 0 systems where Po_ico has a pole at w = O.

The desired objective is to show that the magnitude of the
error goes to zero as the magnitude of H goes to infinity provided
the system remains stable. Since the system is assumed stable and
for step responses the system initial conditions are zero, Equation
(A-2) uniquely describes C in terms of C, and vice versa. Equa-

tion (A-2) can be written in the form

= 1 -1 -1
C—CO—EEPO CO—P C:\.

Returning to the full notation, one obtains
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E(jw) = C(jw) - C,(jw) =

Co(3w)Po~1(jw) — [ P=Ll(ju,jv) CUY) dy. (A-4)
H(jw) - H(jw)

Note that the nominal plant is time-invariant and can thus be
represented by its transfer function which is denoted Po'l(jw).
From the previous discussion it is seen that the first term on the
right hand side of Equation (A-4) goes to zero as |H| goes to
infinity except for type O systems at w = 0. This is because
Po‘lCo is independent of H and is bounded except for the one case.
It is not so obvious, however, that the integral term goes

to zero as |H| goes to infinity since the system output C is
dependent upon H. It will be shown by contradiction that the
integral term does in fact go to zero as the magnitude of H
increases without bound. Suppose that the magnitude of the
integral term does not éo to zero as |H| goes to infinity. That is

lim il A

] [ p=l(iu,5y) S &y >k, (A-5)

‘ —00 H(jw) .
Observe that H(jw) is not a function of the variable of integra-
tion and thus just represents a complex number that grows in
magnitude with the limiting process. Interchanging the order of
the limiting process and the integration procedure and noting that
P'l(jw,jy) is independent of the limiting process since it is

independent of H, one can write
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[ pl(Gw,jy) 1O cy) ay | > k. (A-6)
|1|se H(jw)

-0

In this form it is evident that the magnitude of C must increase

at least as fast as the magnitude of H, for otherwise, the

magnitude of C/H would tend to zero and the magnitude of the

integral would also tend to zero. Thus, C must have the property

lim  |¢| —» alH|®, b 21, A > 0.
[H |- |

Observe, therefore, that

lim _ b
T lc - c | ~aAlH]" .
Thus, from Equation (A-4) , one now obtains

1

im
1]

lin o= | |uf = | f 2 HGe,av) T cGv) dy

|8

or

lim b T wlya. = lim b
Alg|Pla] < [T (Gw,3v) AlH|{® dy.
[t - ﬂ, | H | vl

Dividing by IHlb+1, the expression becomes

A< [P lGu,in| He A dy.

L [ THT

Since the term A/lHl goes to zero as the magnitude of H goes to

infinity, the integral is zero or

A<O
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which is a contradiction., The original supposition that the
integral term of Equation (A-4) does not go to zero is thus false,
and it can only be concluded that the integral term does indeed
go to zero as the magnitude of H goes to infinity.

Since both terms on the right hand side of Equation (A-4)
go to zero as thé magnitude of H increases, the magnitude of the
error must also go tg zero.

In summary, it has been shown that as the magnitude of the
feedback compensation H is increased without bound, the magnitude

of the error tends to zero provided system stability can be

maintained.



APPENDIX B
DERIVATION OF IO(jY)

In this appendix the expression for Io(jy) of design example
two is derived. The expression for Io(jy) is given by
@ ) [o<}

I Gv= [ PTGy dwc, Gede - [ BTGy, je)de

-0 -C

which is equivalent to the Fourier transform of the plant input
when the plant output is equal to co(t) minus the Fourier transform
of the nominal plant'input when the output is equal to co(t).
Referring to design example two it is seen that if the plant output
is co(t) then the plant input is given by

y(£) = g(£)&_(£) + £(e)c (&) ,
and if the input to the nominal plant is co(t) its output is

y(t) = O.SOSé'O(t) + 0.175(':0(t)

Thus the expression for Io(jy) can be written
[oo]
1 G | {@©-0.509)¢ (0 + (£()-0.175)¢ (O} e
-0

Substituting the expressions for g(t), £(t) and co(t) from design

example two into this equation one obtains

(e-1,)

IO(JY)= :rm{[Gl-O.SOS + G2(1-e_b -TZ )u(t-q‘z)]

[4e™h%Ccos (1.4148) - 396" “ sin(1.4140) | w(e) +
[F -0.175 + F (l—e_a(t-Tl))u(t-T )]
17" 2 1
[2.83e_1'4tsin(1.4.4t)u(ti]} e-jyt dt\.

Note that the evaluation of this integral depends upon the values

of Tl and 72. Let
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and

F3 = F1 - 0.175 .

In order to simplify the expression the following functions are

defined:

<]

A, ()= g G, [4e'l'4tcos(1.414t) - 3.96e” 1 4t5in(1.4140) ] e IYE gt

A, ()= g G, (1 - e DTy [4e—1'4tcos(1.414t) -

3;96e—1'4tsin(1.414t) ] e—JYt dt
A, (3= [ 6,0 - e P (E-T2)y [Ae-l'atcos(l.hlat) -
T A .
2 3.96e_1'4tsin(1.414t)] e IVE 4¢

[

B, (3v)= g F, 2.83¢" 1 %Tsin(1.414t) e IV de

B (jv= g F.,.(1L - e -a(t-T )) 2.83e 1'4tsin(1.414t) e_th dt

[e]

B3(jy)= l F2(1 - e_a(t_Tl)) 2.83e
1

_1'4tsin(1.414t) e_J\{t dt

Evaluating these integrals one obtains:

A Gy)= 6, —
GGy + 1.4)" + 2
A Gv)= G Liy 4" (jy + b) i}
2 2{ Gy + 1.6)2 + 2 Gy + 1.4 + b)> + 2
A3(jy)= o e-(jy+1.4)T2 {:4jycos(1.41472)-3.96(§Y+2.8)sin(1.41472)
(Gy + 1L.4)" + 2

4(jytb)cos (1.41479)-3. 96(Jy+2 8+b)sin (L. 41472)-}

Gy + 1.4 + b) + 2
4

(jvy + 1.4)2 + 2

a'Tl
B,(iv)=F, : 2 - — 7
(v + 1.4) + 2 (3jy + 1.4+ a) + 2

Bl(JY)= F3




B3(jv)= F,

4cos(1.414T1)+2.8(jy+1.4+a)sin(1.414T1)

Gy + 1.6)% + 2

(jy + 1.4 +_a)2 + 2

Io(jy) is thus given by the following expressions.

For T1 <0, T2 <0

Io(jv) = Al(jv) + Az(jv) + Bl(jv) + Bz(jv)

>
For T, <0, T, Z 0

Io(jv) = Al(jv) + Az(jv) + Bl(jy) + B3(jv)

> <
For 7, Z 0, T, < 0

Io(jv) = Al(jv) + A3(jv) + Bl(jv) + Bz(jv)

For T >0, T2 >0

I (V) = A GY) + A;GY) + B (V) + ByGY)

e-(jy+1.4)¢1.{ heos (1.41477)+2.8 (Jy+1.4)sin(1.47y)

)
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APPENDIX C
DERIVATION OF Po(jw)/Peq(jm)
In this appendix the expression for Po(jw)/peq(jw) of design
example three is determined, Referring to Equation (3-55)

P (jw)/P q(jw) is seen to be given by
o e

P_(3w) P GGw) = |
Poq(3® ~c (G _fm P (e, e, (Gvdy

The transfer function of the nominal plant is given by

P_(jo) = 5
0.505(jw)” + 0.175jw

and Co(jw) is given by

4
C (jw) = .
© jw [(jw)2 + 2.8jw + 4]
Let
YGo) = [ PTG, ve, Gvdy

This integral is the Fourier transform of the plant input when the

plant output is co(t). Thus the integral can be expressed as
® jwt
1w = [ e, + fme ) e
-0

Comparing Equation C-1 with Equation B-1 of Appendix B it is seen
that the two are the same with the exception of two constant terms
in Equation B-1. Thus the development given in Appendix B applies

directly to obtaining Y(jw) with the exception that G, is set equal

3
to G1 and F3 is set equal to Fl. That is
Y (Gw) = I (jw)
where
€3 = 6
and
F, =F
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For

For

For

For

where the functions Al(jw), Az(jw), A3(jw), Bl(jw), Bz(jw), and
B3(jw) are given in Appendix B with G1 equal to G, and Fl equal

expressions for Po(jw)/Peq(jw) are

P, P ()
P, (9 € (G

[8,Go) + 2,Go) + B) (o) + B, (30 |

PG 2,(w)
P, (9 €9

(2,69 + 4,Go) + B Go) + B, (Gw) ]

P, GO P ()
P, (9 T G

[4,G®) + 8;G0) + B GW) + By () ]

P_(jw) P_(jw) ' . - _
Peq(jw) = Co(j(l)) [Al(J(D) + A3(Jw) + Bl(JUJ) + BB(Jw)]

3

to F,.

3
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APPENDIX D

This appendix discusses the computer simulation of the design
example presented in Chapter 4.

The simulation was carried out on an IBM 1130 digital computer
using the Continuous System Modeling Program or CSMP for the 1130.
The computer had a core storage of 16K and a memory access time of
four microseconds. The CSMP program simulates an analog computer
with the input in the form of functional blocks such as an integra-
tor, summer, multiplier, etc. The éystem to be simulated must
thus be represented by a block diagram in much the same manner as
is done in setting up an analog computer simulation. The program
is limited to a maximum of 25 integrators and a total of 85
functional blocks. This size proved to be adequate for the systems
simulated in the example. The method of performing the inte-
gration in the program is by a second order Range-Kutta which is
carried out at one half:the integration interval specified by the
user.

Modifications to the CSMP program were necessary in order to
save and storé the plant input and output signals as well as to
calculate the necessary Fourier transforms. The algorithm given
in Reference (48) was used in the subroutine for the Fourier
transform computation. Modifications were also made in the program
for selecting a different time-varying function at each run. The
function parameters could either be selected at random from a .

random function genevator or, if desired, could be chosen by the
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operaéor and read in from cards. Provisions were made for
calculating and printing the error E(jw) and the ratio
Po(jw)/Peq(jw) at selected values of w. In addition, the actual
signals themselves could be printed out if desired. As an aid in
determining the regions of Po/qu’ a plotting scheme was devised
whereby the poinfs of PO/Peq were stored for each calculation

and after all time-variations had been run, the points were
"plotted" by the priﬁter for each value of w. This technique
eliminates the necessity of manually plotting each value.

The calculation of the Fourier transform of the various
signals requires special consideration. In the definition of the
Fourier transform, the limits of integration are from plus to
minus infinity. Obviously, the numerical integration cannot be
performed over such a range; however, if the function to be
integrated is zero outside a finite range, the integration need
only be performed over this finite range and the numerical
integration can be performed satisfactorily. Consider the error

function
e(t) = c(t) - cy(t).

At t less than or equal to zero, c and c, are Both zero so that e
is also zero. If there is an integrator in the plant, the final
value of ¢ will equal the final value of c,, so that éhe final
value of e is also zero. Practically, one finds that e is
essentially zero after some finite time T. Thus, the numerical

calculation of E(jw) is accomplished by integrating over the

300
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interval zero to T. Difficulty is encountered in the numerical
evaluation of the Fourier transform of the étep response c(t).
HWote that c is zero for t less than or equal to zero but goes to
some finite value C_ as t goes to infinity. Thus, the numerical
evaluation of C(jy) cannot be made from c(t) directly. This

difficulty can be circumvented by defining a new function &(t) as
E(t) = C, ul(t) - c(t)

where u(t) is the unit step function. After some time T, c(u)

is essentially equal to Ce SO that c(t) is zero for t greater than
T. Also, &(t) is zero for t less than zero so that the numerical
Fourier transform of &(t) can easily be calculated by integrating
over the inéerval zero to T. The Fourier transform of u(t) for

w greater than zero is known to be
u(t) =

1
jw

so that the Fourier transform of C can be obtained from the

relation

C(iw) = cjf”[u(t)] g E(t)]
= 9°i - C(jw)
Jw

The function ¢(t) can easily be obtained in the simulation from
which €(jw) and C(jw) are then calculated. The calculation of

the Fourier transform of the plant input presents no particular
problem since in the example the plant input signal goes to zero

as time goes to infinity.
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The integration step size in the program must be selected
by the operator and is unchanged throughout the run. A number of
step sizes were examined in order to determine the proper values
which would yield as ragid a solution as possible and still
maintain accuracy. The size selected was 0.01 seconds. Tests
were run on time—-invariant systems to check the accuracy of the
Fourier transform calcqlation and it was found that the computer
computations error waé well within 5% up to 30 radians. As an
additional test, each time-varying design was run with the gain
_held constant at values of 1, 1.818, and 10, and the results
compared against analytical calculations. This procedure not
only verified the accuracy of the calculation but also insured
against-an error in the simulation.

Despite efforts to reduce computation time, the calculations
were fairly lengthy. Tt required from seven to temn minutes of
computer time to calculate ten seconds of simﬁlated system time
and an additional two minutes were required to compute lEI and
Po/Peq for the frequencies of interest. A complete design
evaluation consisting of from 250 to 300 runs required from 35

to 40 hours of computer time.



